Related
Most of us are familiar with the maximum sum subarray problem. I came across a variant of this problem which asks the programmer to output the maximum of all subarray sums modulo some number M.
The naive approach to solve this variant would be to find all possible subarray sums (which would be of the order of N^2 where N is the size of the array). Of course, this is not good enough. The question is - how can we do better?
Example: Let us consider the following array:
6 6 11 15 12 1
Let M = 13. In this case, subarray 6 6 (or 12 or 6 6 11 15 or 11 15 12) will yield maximum sum ( = 12 ).
We can do this as follow:
Maintaining an array sum which at index ith, it contains the modulus sum from 0 to ith.
For each index ith, we need to find the maximum sub sum that end at this index:
For each subarray (start + 1 , i ), we know that the mod sum of this sub array is
int a = (sum[i] - sum[start] + M) % M
So, we can only achieve a sub-sum larger than sum[i] if sum[start] is larger than sum[i] and as close to sum[i] as possible.
This can be done easily if you using a binary search tree.
Pseudo code:
int[] sum;
sum[0] = A[0];
Tree tree;
tree.add(sum[0]);
int result = sum[0];
for(int i = 1; i < n; i++){
sum[i] = sum[i - 1] + A[i];
sum[i] %= M;
int a = tree.getMinimumValueLargerThan(sum[i]);
result = max((sum[i] - a + M) % M, result);
tree.add(sum[i]);
}
print result;
Time complexity :O(n log n)
Let A be our input array with zero-based indexing. We can reduce A modulo M without changing the result.
First of all, let's reduce the problem to a slightly easier one by computing an array P representing the prefix sums of A, modulo M:
A = 6 6 11 2 12 1
P = 6 12 10 12 11 12
Now let's process the possible left borders of our solution subarrays in decreasing order. This means that we will first determine the optimal solution that starts at index n - 1, then the one that starts at index n - 2 etc.
In our example, if we chose i = 3 as our left border, the possible subarray sums are represented by the suffix P[3..n-1] plus a constant a = A[i] - P[i]:
a = A[3] - P[3] = 2 - 12 = 3 (mod 13)
P + a = * * * 2 1 2
The global maximum will occur at one point too. Since we can insert the suffix values from right to left, we have now reduced the problem to the following:
Given a set of values S and integers x and M, find the maximum of S + x modulo M
This one is easy: Just use a balanced binary search tree to manage the elements of S. Given a query x, we want to find the largest value in S that is smaller than M - x (that is the case where no overflow occurs when adding x). If there is no such value, just use the largest value of S. Both can be done in O(log |S|) time.
Total runtime of this solution: O(n log n)
Here's some C++ code to compute the maximum sum. It would need some minor adaptions to also return the borders of the optimal subarray:
#include <bits/stdc++.h>
using namespace std;
int max_mod_sum(const vector<int>& A, int M) {
vector<int> P(A.size());
for (int i = 0; i < A.size(); ++i)
P[i] = (A[i] + (i > 0 ? P[i-1] : 0)) % M;
set<int> S;
int res = 0;
for (int i = A.size() - 1; i >= 0; --i) {
S.insert(P[i]);
int a = (A[i] - P[i] + M) % M;
auto it = S.lower_bound(M - a);
if (it != begin(S))
res = max(res, *prev(it) + a);
res = max(res, (*prev(end(S)) + a) % M);
}
return res;
}
int main() {
// random testing to the rescue
for (int i = 0; i < 1000; ++i) {
int M = rand() % 1000 + 1, n = rand() % 1000 + 1;
vector<int> A(n);
for (int i = 0; i< n; ++i)
A[i] = rand() % M;
int should_be = 0;
for (int i = 0; i < n; ++i) {
int sum = 0;
for (int j = i; j < n; ++j) {
sum = (sum + A[j]) % M;
should_be = max(should_be, sum);
}
}
assert(should_be == max_mod_sum(A, M));
}
}
For me, all explanations here were awful, since I didn't get the searching/sorting part. How do we search/sort, was unclear.
We all know that we need to build prefixSum, meaning sum of all elems from 0 to i with modulo m
I guess, what we are looking for is clear.
Knowing that subarray[i][j] = (prefix[i] - prefix[j] + m) % m (indicating the modulo sum from index i to j), our maxima when given prefix[i] is always that prefix[j] which is as close as possible to prefix[i], but slightly bigger.
E.g. for m = 8, prefix[i] being 5, we are looking for the next value after 5, which is in our prefixArray.
For efficient search (binary search) we sort the prefixes.
What we can not do is, build the prefixSum first, then iterate again from 0 to n and look for index in the sorted prefix array, because we can find and endIndex which is smaller than our startIndex, which is no good.
Therefore, what we do is we iterate from 0 to n indicating the endIndex of our potential max subarray sum and then look in our sorted prefix array, (which is empty at the beginning) which contains sorted prefixes between 0 and endIndex.
def maximumSum(coll, m):
n = len(coll)
maxSum, prefixSum = 0, 0
sortedPrefixes = []
for endIndex in range(n):
prefixSum = (prefixSum + coll[endIndex]) % m
maxSum = max(maxSum, prefixSum)
startIndex = bisect.bisect_right(sortedPrefixes, prefixSum)
if startIndex < len(sortedPrefixes):
maxSum = max(maxSum, prefixSum - sortedPrefixes[startIndex] + m)
bisect.insort(sortedPrefixes, prefixSum)
return maxSum
From your question, it seems that you have created an array to store the cumulative sums (Prefix Sum Array), and are calculating the sum of the sub-array arr[i:j] as (sum[j] - sum[i] + M) % M. (arr and sum denote the given array and the prefix sum array respectively)
Calculating the sum of every sub-array results in a O(n*n) algorithm.
The question that arises is -
Do we really need to consider the sum of every sub-array to reach the desired maximum?
No!
For a value of j the value (sum[j] - sum[i] + M) % M will be maximum when sum[i] is just greater than sum[j] or the difference is M - 1.
This would reduce the algorithm to O(nlogn).
You can take a look at this explanation! https://www.youtube.com/watch?v=u_ft5jCDZXk
There are already a bunch of great solutions listed here, but I wanted to add one that has O(nlogn) runtime without using a balanced binary tree, which isn't in the Python standard library. This solution isn't my idea, but I had to think a bit as to why it worked. Here's the code, explanation below:
def maximumSum(a, m):
prefixSums = [(0, -1)]
for idx, el in enumerate(a):
prefixSums.append(((prefixSums[-1][0] + el) % m, idx))
prefixSums = sorted(prefixSums)
maxSeen = prefixSums[-1][0]
for (a, a_idx), (b, b_idx) in zip(prefixSums[:-1], prefixSums[1:]):
if a_idx > b_idx and b > a:
maxSeen = max((a-b) % m, maxSeen)
return maxSeen
As with the other solutions, we first calculate the prefix sums, but this time we also keep track of the index of the prefix sum. We then sort the prefix sums, as we want to find the smallest difference between prefix sums modulo m - sorting lets us just look at adjacent elements as they have the smallest difference.
At this point you might think we're neglecting an essential part of the problem - we want the smallest difference between prefix sums, but the larger prefix sum needs to appear before the smaller prefix sum (meaning it has a smaller index). In the solutions using trees, we ensure that by adding prefix sums one by one and recalculating the best solution.
However, it turns out that we can look at adjacent elements and just ignore ones that don't satisfy our index requirement. This confused me for some time, but the key realization is that the optimal solution will always come from two adjacent elements. I'll prove this via a contradiction. Let's say that the optimal solution comes from two non-adjacent prefix sums x and z with indices i and k, where z > x (it's sorted!) and k > i:
x ... z
k ... i
Let's consider one of the numbers between x and z, and let's call it y with index j. Since the list is sorted, x < y < z.
x ... y ... z
k ... j ... i
The prefix sum y must have index j < i, otherwise it would be part of a better solution with z. But if j < i, then j < k and y and x form a better solution than z and x! So any elements between x and z must form a better solution with one of the two, which contradicts our original assumption. Therefore the optimal solution must come from adjacent prefix sums in the sorted list.
Here is Java code for maximum sub array sum modulo. We handle the case we can not find least element in the tree strictly greater than s[i]
public static long maxModulo(long[] a, final long k) {
long[] s = new long[a.length];
TreeSet<Long> tree = new TreeSet<>();
s[0] = a[0] % k;
tree.add(s[0]);
long result = s[0];
for (int i = 1; i < a.length; i++) {
s[i] = (s[i - 1] + a[i]) % k;
// find least element in the tree strictly greater than s[i]
Long v = tree.higher(s[i]);
if (v == null) {
// can't find v, then compare v and s[i]
result = Math.max(s[i], result);
} else {
result = Math.max((s[i] - v + k) % k, result);
}
tree.add(s[i]);
}
return result;
}
Few points from my side that might hopefully help someone understand the problem better.
You do not need to add +M to the modulo calculation, as mentioned, % operator handles negative numbers well, so a % M = (a + M) % M
As mentioned, the trick is to build the proxy sum table such that
proxy[n] = (a[1] + ... a[n]) % M
This then allows one to represent the maxSubarraySum[i, j] as
maxSubarraySum[i, j] = (proxy[j] - proxy[j]) % M
The implementation trick is to build the proxy table as we iterate through the elements, instead of first pre-building it and then using. This is because for each new element in the array a[i] we want to compute proxy[i] and find proxy[j] that is bigger than but as close as possible to proxy[i] (ideally bigger by 1 because this results in a reminder of M - 1). For this we need to use a clever data structure for building proxy table while keeping it sorted and
being able to quickly find a closest bigger element to proxy[i]. bisect.bisect_right is a good choice in Python.
See my Python implementation below (hope this helps but I am aware this might not necessarily be as concise as others' solutions):
def maximumSum(a, m):
prefix_sum = [a[0] % m]
prefix_sum_sorted = [a[0] % m]
current_max = prefix_sum_sorted[0]
for elem in a[1:]:
prefix_sum_next = (prefix_sum[-1] + elem) % m
prefix_sum.append(prefix_sum_next)
idx_closest_bigger = bisect.bisect_right(prefix_sum_sorted, prefix_sum_next)
if idx_closest_bigger >= len(prefix_sum_sorted):
current_max = max(current_max, prefix_sum_next)
bisect.insort_right(prefix_sum_sorted, prefix_sum_next)
continue
if prefix_sum_sorted[idx_closest_bigger] > prefix_sum_next:
current_max = max(current_max, (prefix_sum_next - prefix_sum_sorted[idx_closest_bigger]) % m)
bisect.insort_right(prefix_sum_sorted, prefix_sum_next)
return current_max
Total java implementation with O(n*log(n))
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.util.TreeSet;
import java.util.stream.Stream;
public class MaximizeSumMod {
public static void main(String[] args) throws Exception{
BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
Long times = Long.valueOf(in.readLine());
while(times --> 0){
long[] pair = Stream.of(in.readLine().split(" ")).mapToLong(Long::parseLong).toArray();
long mod = pair[1];
long[] numbers = Stream.of(in.readLine().split(" ")).mapToLong(Long::parseLong).toArray();
printMaxMod(numbers,mod);
}
}
private static void printMaxMod(long[] numbers, Long mod) {
Long maxSoFar = (numbers[numbers.length-1] + numbers[numbers.length-2])%mod;
maxSoFar = (maxSoFar > (numbers[0]%mod)) ? maxSoFar : numbers[0]%mod;
numbers[0] %=mod;
for (Long i = 1L; i < numbers.length; i++) {
long currentNumber = numbers[i.intValue()]%mod;
maxSoFar = maxSoFar > currentNumber ? maxSoFar : currentNumber;
numbers[i.intValue()] = (currentNumber + numbers[i.intValue()-1])%mod;
maxSoFar = maxSoFar > numbers[i.intValue()] ? maxSoFar : numbers[i.intValue()];
}
if(mod.equals(maxSoFar+1) || numbers.length == 2){
System.out.println(maxSoFar);
return;
}
long previousNumber = numbers[0];
TreeSet<Long> set = new TreeSet<>();
set.add(previousNumber);
for (Long i = 2L; i < numbers.length; i++) {
Long currentNumber = numbers[i.intValue()];
Long ceiling = set.ceiling(currentNumber);
if(ceiling == null){
set.add(numbers[i.intValue()-1]);
continue;
}
if(ceiling.equals(currentNumber)){
set.remove(ceiling);
Long greaterCeiling = set.ceiling(currentNumber);
if(greaterCeiling == null){
set.add(ceiling);
set.add(numbers[i.intValue()-1]);
continue;
}
set.add(ceiling);
ceiling = greaterCeiling;
}
Long newMax = (currentNumber - ceiling + mod);
maxSoFar = maxSoFar > newMax ? maxSoFar :newMax;
set.add(numbers[i.intValue()-1]);
}
System.out.println(maxSoFar);
}
}
Adding STL C++11 code based on the solution suggested by #Pham Trung. Might be handy.
#include <iostream>
#include <set>
int main() {
int N;
std::cin>>N;
for (int nn=0;nn<N;nn++){
long long n,m;
std::set<long long> mSet;
long long maxVal = 0; //positive input values
long long sumVal = 0;
std::cin>>n>>m;
mSet.insert(m);
for (long long q=0;q<n;q++){
long long tmp;
std::cin>>tmp;
sumVal = (sumVal + tmp)%m;
auto itSub = mSet.upper_bound(sumVal);
maxVal = std::max(maxVal,(m + sumVal - *itSub)%m);
mSet.insert(sumVal);
}
std::cout<<maxVal<<"\n";
}
}
As you can read in Wikipedia exists a solution called Kadane's algorithm, which compute the maximum subarray sum watching ate the maximum subarray ending at position i for all positions i by iterating once over the array. Then this solve the problem with with runtime complexity O(n).
Unfortunately, I think that Kadane's algorithm isn't able to find all possible solution when more than one solution exists.
An implementation in Java, I didn't tested it:
public int[] kadanesAlgorithm (int[] array) {
int start_old = 0;
int start = 0;
int end = 0;
int found_max = 0;
int max = array[0];
for(int i = 0; i<array.length; i++) {
max = Math.max(array[i], max + array[i]);
found_max = Math.max(found_max, max);
if(max < 0)
start = i+1;
else if(max == found_max) {
start_old=start;
end = i;
}
}
return Arrays.copyOfRange(array, start_old, end+1);
}
I feel my thoughts are aligned with what have been posted already, but just in case - Kotlin O(NlogN) solution:
val seen = sortedSetOf(0L)
var prev = 0L
return max(a.map { x ->
val z = (prev + x) % m
prev = z
seen.add(z)
seen.higher(z)?.let{ y ->
(z - y + m) % m
} ?: z
})
Implementation in java using treeset...
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.TreeSet;
public class Main {
public static void main(String[] args) throws IOException {
BufferedReader read = new BufferedReader(new InputStreamReader(System.in)) ;
String[] str = read.readLine().trim().split(" ") ;
int n = Integer.parseInt(str[0]) ;
long m = Long.parseLong(str[1]) ;
str = read.readLine().trim().split(" ") ;
long[] arr = new long[n] ;
for(int i=0; i<n; i++) {
arr[i] = Long.parseLong(str[i]) ;
}
long maxCount = 0L ;
TreeSet<Long> tree = new TreeSet<>() ;
tree.add(0L) ;
long prefix = 0L ;
for(int i=0; i<n; i++) {
prefix = (prefix + arr[i]) % m ;
maxCount = Math.max(prefix, maxCount) ;
Long temp = tree.higher(prefix) ;
System.out.println(temp);
if(temp != null) {
maxCount = Math.max((prefix-temp+m)%m, maxCount) ;
}
//System.out.println(maxCount);
tree.add(prefix) ;
}
System.out.println(maxCount);
}
}
Here is one implementation of solution in java for this problem which works using TreeSet in java for optimized solution !
public static long maximumSum2(long[] arr, long n, long m)
{
long x = 0;
long prefix = 0;
long maxim = 0;
TreeSet<Long> S = new TreeSet<Long>();
S.add((long)0);
// Traversing the array.
for (int i = 0; i < n; i++)
{
// Finding prefix sum.
prefix = (prefix + arr[i]) % m;
// Finding maximum of prefix sum.
maxim = Math.max(maxim, prefix);
// Finding iterator poing to the first
// element that is not less than value
// "prefix + 1", i.e., greater than or
// equal to this value.
long it = S.higher(prefix)!=null?S.higher(prefix):0;
// boolean isFound = false;
// for (long j : S)
// {
// if (j >= prefix + 1)
// if(isFound == false) {
// it = j;
// isFound = true;
// }
// else {
// if(j < it) {
// it = j;
// }
// }
// }
if (it != 0)
{
maxim = Math.max(maxim, prefix - it + m);
}
// adding prefix in the set.
S.add(prefix);
}
return maxim;
}
public static int MaxSequence(int[] arr)
{
int maxSum = 0;
int partialSum = 0;
int negative = 0;
for (int i = 0; i < arr.Length; i++)
{
if (arr[i] < 0)
{
negative++;
}
}
if (negative == arr.Length)
{
return 0;
}
foreach (int item in arr)
{
partialSum += item;
maxSum = Math.Max(maxSum, partialSum);
if (partialSum < 0)
{
partialSum = 0;
}
}
return maxSum;
}
Modify Kadane algorithm to keep track of #occurrence. Below is the code.
#python3
#source: https://github.com/harishvc/challenges/blob/master/dp-largest-sum-sublist-modulo.py
#Time complexity: O(n)
#Space complexity: O(n)
def maxContiguousSum(a,K):
sum_so_far =0
max_sum = 0
count = {} #keep track of occurrence
for i in range(0,len(a)):
sum_so_far += a[i]
sum_so_far = sum_so_far%K
if sum_so_far > 0:
max_sum = max(max_sum,sum_so_far)
if sum_so_far in count.keys():
count[sum_so_far] += 1
else:
count[sum_so_far] = 1
else:
assert sum_so_far < 0 , "Logic error"
#IMPORTANT: reset sum_so_far
sum_so_far = 0
return max_sum,count[max_sum]
a = [6, 6, 11, 15, 12, 1]
K = 13
max_sum,count = maxContiguousSum(a,K)
print("input >>> %s max sum=%d #occurrence=%d" % (a,max_sum,count))
I was wondering how could I get the longest positive-sum subsequence in a sequence:
For example I have -6 3 -4 4 -5, so the longest positive subsequence is 3 -4 4. In fact the sum is positive (3), and we couldn't add -6 neither -5 or it would have become negative.
It could be easily solvable in O(N^2), I think could exist something much more faster, like in O(NlogN)
Do you have any idea?
EDIT: the order must be preserved, and you can skip any number from the substring
EDIT2: I'm sorry if I caused confusion using the term "sebsequence", as #beaker pointed out I meant substring
O(n) space and time solution, will start with the code (sorry, Java ;-) and try to explain it later:
public static int[] longestSubarray(int[] inp) {
// array containing prefix sums up to a certain index i
int[] p = new int[inp.length];
p[0] = inp[0];
for (int i = 1; i < inp.length; i++) {
p[i] = p[i - 1] + inp[i];
}
// array Q from the description below
int[] q = new int[inp.length];
q[inp.length - 1] = p[inp.length - 1];
for (int i = inp.length - 2; i >= 0; i--) {
q[i] = Math.max(q[i + 1], p[i]);
}
int a = 0;
int b = 0;
int maxLen = 0;
int curr;
int[] res = new int[] {-1,-1};
while (b < inp.length) {
curr = a > 0 ? q[b] - p[a-1] : q[b];
if (curr >= 0) {
if(b-a > maxLen) {
maxLen = b-a;
res = new int[] {a,b};
}
b++;
} else {
a++;
}
}
return res;
}
we are operating on input array A of size n
Let's define array P as the array containing the prefix sum until index i so P[i] = sum(0,i) where `i = 0,1,...,n-1'
let's notice that if u < v and P[u] <= P[v] then u will never be our ending point
because of the above we can define an array Q which has Q[n-1] = P[n-1] and Q[i] = max(P[i], Q[i+1])
now let's consider M_{a,b} which shows us the maximum sum subarray starting at a and ending at b or beyond. We know that M_{0,b} = Q[b] and that M_{a,b} = Q[b] - P[a-1]
with the above information we can now initialise our a, b = 0 and start moving them. If the current value of M is bigger or equal to 0 then we know we will find (or already found) a subarray with sum >= 0, we then just need to compare b-a with the previously found length. Otherwise there's no subarray that starts at a and adheres to our constraints so we need to increment a.
Let's make a naive implementation and then improve it.
We move from the left to the right calculating partial sums and for each position we find the most-left partial sum such as the current partial sum is greater than that.
input a
int partialSums[len(a)]
for i in range(len(a)):
partialSums[i] = (i == 0 ? 0 : partialSums[i - 1]) + a[i]
if partialSums[i] > 0:
answer = max(answer, i + 1)
else:
for j in range(i):
if partialSums[i] - partialSums[j] > 0:
answer = max(answer, i - j)
break
This is O(n2). Now the part of finding the left-most "good" sum could be actually maintained via BST, where each node would be represented as a pair (partial sum, index) with a comparison by partial sum. Also each node should support a special field min that would be the minimum of indices in this subtree.
Now instead of the straightforward search of an appropriate partial sum we could descend the BST using the current partial sum as a key following the next three rules (assuming C is the current node, L and R are the roots of the left and the right subtrees respectively):
Maintain the current minimal index of "good" partial sums found in curMin, initially +∞.
If C.partial_sum is "good" then update curMin with C.index.
If we go to R then update curMin with L.min.
And then update the answer with i - curMin, also add the current partial sum to the BST.
That would give us O(n * log n).
We can easily have a O(n log n) solution for longest subsequence.
First, sort the array, remember their indexes.
Pick all the largest numbers, stop when their sum are negative, and you have your answer.
Recover their original order.
Pseudo code
sort(data);
int length = 0;
long sum = 0;
boolean[] result = new boolean[n];
for(int i = n ; i >= 1; i--){
if(sum + data[i] <= 0)
break;
sum += data[i];
result[data[i].index] = true;
length++;
}
for(int i = 1; i <= n; i++)
if(result[i])
print i;
So, rather than waiting, I will propose a O(n log n) solution for longest positive substring.
First, we create an array prefix which is the prefix sum of the array.
Second, we using binary search to look for the longest length that has positive sum
Pseudocode
int[]prefix = new int[n];
for(int i = 1; i <= n; i++)
prefix[i] = data[i];
if(i - 1 >= 1)
prefix[i] += prefix[i - 1];
int min = 0;
int max = n;
int result = 0;
while(min <= max){
int mid = (min + max)/2;
boolean ok = false;
for(int i = 1; i <= n; i++){
if(i > mid && pre[i] - pre[i - mid] > 0){//How we can find sum of segment with mid length, and end at index i
ok = true;
break;
}
}
if(ok){
result = max(result, mid)
min = mid + 1;
}else{
max = mid - 1;
}
}
Ok, so the above algorithm is wrong, as pointed out by piotrekg2 what we need to do is
create an array prefix which is the prefix sum of the array.
Sort the prefix array, and we need to remember the index of the prefix array.
Iterate through the prefix array, storing the minimum index we meet so far, the maximum different between the index is the answer.
Note: when we comparing value in prefix, if two indexes have equivalent values, so which has smaller index will be considered larger, this will avoid the case when the sum is 0.
Pseudo code:
class Node{
int val, index;
}
Node[]prefix = new Node[n];
for(int i = 1; i <= n; i++)
prefix[i] = new Node(data[i],i);
if(i - 1 >= 1)
prefix[i].val += prefix[i - 1].val;
sort(prefix);
int min = prefix[1].index;
int result = 0;
for(int i = 2; i <= n; i ++)
if(prefix[i].index > min)
result = max(prefix[i].index - min + 1, result)
min = min(min, prefix[i].index);
There's an array A containing (positive and negative) integers. Find a (contiguous) subarray whose elements' absolute sum is minimal, e.g.:
A = [2, -4, 6, -3, 9]
|(−4) + 6 + (−3)| = 1 <- minimal absolute sum
I've started by implementing a brute-force algorithm which was O(N^2) or O(N^3), though it produced correct results. But the task specifies:
complexity:
- expected worst-case time complexity is O(N*log(N))
- expected worst-case space complexity is O(N)
After some searching I thought that maybe Kadane's algorithm can be modified to fit this problem but I failed to do it.
My question is - is Kadane's algorithm the right way to go? If not, could you point me in the right direction (or name an algorithm that could help me here)? I don't want a ready-made code, I just need help in finding the right algorithm.
If you compute the partial sums
such as
2, 2 +(-4), 2 + (-4) + 6, 2 + (-4) + 6 + (-3)...
Then the sum of any contiguous subarray is the difference of two of the partial sums. So to find the contiguous subarray whose absolute value is minimal, I suggest that you sort the partial sums and then find the two values which are closest together, and use the positions of these two partial sums in the original sequence to find the start and end of the sub-array with smallest absolute value.
The expensive bit here is the sort, so I think this runs in time O(n * log(n)).
This is C++ implementation of Saksow's algorithm.
int solution(vector<int> &A) {
vector<int> P;
int min = 20000 ;
int dif = 0 ;
P.resize(A.size()+1);
P[0] = 0;
for(int i = 1 ; i < P.size(); i ++)
{
P[i] = P[i-1]+A[i-1];
}
sort(P.begin(),P.end());
for(int i = 1 ; i < P.size(); i++)
{
dif = P[i]-P[i-1];
if(dif<min)
{
min = dif;
}
}
return min;
}
I was doing this test on Codility and I found mcdowella answer quite helpful, but not enough I have to say: so here is a 2015 answer guys!
We need to build the prefix sums of array A (called P here) like: P[0] = 0, P[1] = P[0] + A[0], P[2] = P[1] + A[1], ..., P[N] = P[N-1] + A[N-1]
The "min abs sum" of A will be the minimum absolute difference between 2 elements in P. So we just have to .sort() P and loop through it taking every time 2 successive elements. This way we have O(N + Nlog(N) + N) which equals to O(Nlog(N)).
That's it!
The answer is yes, Kadane's algorithm is definitely the way to go for solving your problem.
http://en.wikipedia.org/wiki/Maximum_subarray_problem
Source - I've closely worked with a PhD student who's entire PhD thesis was devoted to the maximum subarray problem.
def min_abs_subarray(a):
s = [a[0]]
for e in a[1:]:
s.append(s[-1] + e)
s = sorted(s)
min = abs(s[0])
t = s[0]
for x in s[1:]:
cur = abs(x)
min = cur if cur < min else min
cur = abs(t-x)
min = cur if cur < min else min
t = x
return min
You can run Kadane's algorithmtwice(or do it in one go) to find minimum and maximum sum where finding minimum works in same way as maximum with reversed signs and then calculate new maximum by comparing their absolute value.
Source-Someone's(dont remember who) comment in this site.
Here is an Iterative solution in python. It's 100% correct.
def solution(A):
memo = []
if not len(A):
return 0
for ind, val in enumerate(A):
if ind == 0:
memo.append([val, -1*val])
else:
newElem = []
for i in memo[ind - 1]:
newElem.append(i+val)
newElem.append(i-val)
memo.append(newElem)
return min(abs(n) for n in memo.pop())
Short Sweet and work like a charm. JavaScript / NodeJs solution
function solution(A, i=0, sum =0 ) {
//Edge case if Array is empty
if(A.length == 0) return 0;
// Base case. For last Array element , add and substart from sum
// and find min of their absolute value
if(A.length -1 === i){
return Math.min( Math.abs(sum + A[i]), Math.abs(sum - A[i])) ;
}
// Absolute value by adding the elem with the sum.
// And recusrively move to next elem
let plus = Math.abs(solution(A, i+1, sum+A[i]));
// Absolute value by substracting the elem from the sum
let minus = Math.abs(solution(A, i+1, sum-A[i]));
return Math.min(plus, minus);
}
console.log(solution([-100, 3, 2, 4]))
Here is a C solution based on Kadane's algorithm.
Hopefully its helpful.
#include <stdio.h>
int min(int a, int b)
{
return (a >= b)? b: a;
}
int min_slice(int A[], int N) {
if (N==0 || N>1000000)
return 0;
int minTillHere = A[0];
int minSoFar = A[0];
int i;
for(i = 1; i < N; i++){
minTillHere = min(A[i], minTillHere + A[i]);
minSoFar = min(minSoFar, minTillHere);
}
return minSoFar;
}
int main(){
int A[]={3, 2, -6, 4, 0}, N = 5;
//int A[]={3, 2, 6, 4, 0}, N = 5;
//int A[]={-4, -8, -3, -2, -4, -10}, N = 6;
printf("Minimum slice = %d \n", min_slice(A,N));
return 0;
}
public static int solution(int[] A) {
int minTillHere = A[0];
int absMinTillHere = A[0];
int minSoFar = A[0];
int i;
for(i = 1; i < A.length; i++){
absMinTillHere = Math.min(Math.abs(A[i]),Math.abs(minTillHere + A[i]));
minTillHere = Math.min(A[i], minTillHere + A[i]);
minSoFar = Math.min(Math.abs(minSoFar), absMinTillHere);
}
return minSoFar;
}
int main()
{
int n; cin >> n;
vector<int>a(n);
for(int i = 0; i < n; i++) cin >> a[i];
long long local_min = 0, global_min = LLONG_MAX;
for(int i = 0; i < n; i++)
{
if(abs(local_min + a[i]) > abs(a[i]))
{
local_min = a[i];
}
else local_min += a[i];
global_min = min(global_min, abs(local_min));
}
cout << global_min << endl;
}
This question already has answers here:
Maximum sum sublist?
(13 answers)
Closed 8 years ago.
In an interview one of my friends was asked to find the subarray of an array with maximum sum, this my solution to the problem , how can I improve the solution make it more optimal , should i rather consider doing in a recursive fashion ?
def get_max_sum_subset(x):
max_subset_sum = 0
max_subset_i = 0
max_subset_j = 0
for i in range(0,len(x)+1):
for j in range(i+1,len(x)+1):
current_sum = sum(x[i:j])
if current_sum > max_subset_sum:
max_subset_sum = current_sum
max_subset_i = i
max_subset_j = j
return max_subset_sum,max_subset_i,max_subset_j
Your solution is O(n^2). The optimal solution is linear. It works so that you scan the array from left to right, taking note of the best sum and the current sum:
def get_max_sum_subset(x):
bestSoFar = 0
bestNow = 0
bestStartIndexSoFar = -1
bestStopIndexSoFar = -1
bestStartIndexNow = -1
for i in xrange(len(x)):
value = bestNow + x[i]
if value > 0:
if bestNow == 0:
bestStartIndexNow = i
bestNow = value
else:
bestNow = 0
if bestNow > bestSoFar:
bestSoFar = bestNow
bestStopIndexSoFar = i
bestStartIndexSoFar = bestStartIndexNow
return bestSoFar, bestStartIndexSoFar, bestStopIndexSoFar
This problem was also discussed thourougly in Programming Pearls: Algorithm Design Techniques (highly recommended). There you can also find a recursive solution, which is not optimal (O(n log n)), but better than O(n^2).
This is a well-known problem that displays overlapping optimal substructure, which suggests a dynamic programming (DP) solution. Although DP solutions are usually quite tricky (I think so at least!), this one is a great example to get introduced to the whole concept.
The first thing to note is that the maximal subarray (which must be a contiguous portion of the given array A) ending at position j either consists of the maximimal subarray ending at position j-1 plus A[j], or is empty (this only occurs if A[j] < 0). In other words, we are asking whether the element A[j] is contributing positively to the current maximum sum ending at position j-1. If yes, include it in the maximal subarray so far; if not, don't. Thus, from solving smaller subproblems that overlap we can build up an optimal solution.
The sum of the maximal subarray ending at position j can then be given recursively by the following relation:
sum[0] = max(0, A[0])
sum[j] = max(0, sum[j-1] + A[j])
We can build up these answers in a bottom-up fashion by scanning A from left to right. We update sum[j] as we consider A[j]. We can keep track of the overall maximum value and the location of the maximal subarray through this process as well. Here is a quick solution I wrote up in Ruby:
def max_subarray(a)
sum = [0]
max, head, tail = sum[0], -1, -1
cur_head = 0
(0...a.size).each do |j|
# base case included below since sum[-1] = sum[0]
sum[j] = [0, sum[j-1] + a[j]].max
cur_head = j if sum[j-1] == 0
if sum[j] > max
max, head, tail = sum[j], cur_head, j
end
end
return max, head, tail
end
Take a look at my gist if you'd like to test this for yourself.
This is clearly a linear O(N) algorithm since only one pass through the list is required. Hope this helps!
let n - elements count, a(i) - your array f(i) - maximum sum of subarray that ends at position i (minimum length is 1). Then:
f(0) = a(i);
f(i) = max(f(i-1), 0) + a(i); //f(i-1) when we continue subarray, or 0 - when start at i position
max(0, f(1), f(2), ... , f(n-1)) - the answer
A much better solution approach can be derived by thinking about what conditions must hold for a maximum-sum sub-array: the first item on either end that is not included (if any) must be negative and the last item on either end that is included must be non-negative. You don't need to consider any other end points for the sub-array except where these changes occur in the original data.
There is a short video from MIT that helps you understand this dynamic programming problem.
http://people.csail.mit.edu/bdean/6.046/dp/
Click on the first link under the 'problems' section and you will see it.
Here is a simple O(N) algorithm from http://en.wikipedia.org/wiki/Maximum_subarray_problem
int maxsofar=0;
int maxendinghere=0;
for i=[0 n] {
maxendinghere=max(maxendinghere+x[i],0);
maxsofar=max(maxsofar,maxendinghere);
}
Unless I'm missing something important, if they are positive integers the subset would include the whole array, if they're integers, it would include only positive integers. Is there another constraint there?
Java solution:
Does not work for an array with all negatives.
public static int[] maxsubarray(int[] array) {
//empty array check
if (array.length == 0){
return new int[]{};
}
int max = 0;
int maxsofar = 0;
//indices
int maxsofarstart = 0;
int maxsofarend = 0;
int maxstartindex = 0;
for (int i = 0; i < array.length; i++) {
if (array[i] > 0) {
if (max == 0) {
maxstartindex = i;
}
max = max + array[i];
if (max > maxsofar) {
maxsofar = max;
maxsofarstart = maxstartindex;
maxsofarend = i;
}
} else {
max = 0;
}
}
return Arrays.copyOfRange(array, maxsofarstart, maxsofarend + 1);
}
here is one of most well-expained, tested, working solution - http://rerun.me/blog/2012/08/30/maximum-continuous-subarray-problem-kandanes-algorithm/
package me.rerun;
public class Kadane {
public static void main(String[] args) {
int[] intArr={3, -1, -1, -1, -1, -1, 2, 0, 0, 0 };
//int[] intArr = {-1, 3, -5, 4, 6, -1, 2, -7, 13, -3};
//int[] intArr={-6,-2,-3,-4,-1,-5,-5};
findMaxSubArray(intArr);
}
public static void findMaxSubArray(int[] inputArray){
int maxStartIndex=0;
int maxEndIndex=0;
int maxSum = Integer.MIN_VALUE;
int cumulativeSum= 0;
int maxStartIndexUntilNow=0;
for (int currentIndex = 0; currentIndex < inputArray.length; currentIndex++) {
int eachArrayItem = inputArray[currentIndex];
cumulativeSum+=eachArrayItem;
if(cumulativeSum>maxSum){
maxSum = cumulativeSum;
maxStartIndex=maxStartIndexUntilNow;
maxEndIndex = currentIndex;
}
else if (cumulativeSum<0){
maxStartIndexUntilNow=currentIndex+1;
cumulativeSum=0;
}
}
System.out.println("Max sum : "+maxSum);
System.out.println("Max start index : "+maxStartIndex);
System.out.println("Max end index : "+maxEndIndex);
}
}
This is the correct Java Code which will handle scenarios including all negative numbers.
public static long[] leftToISumMaximize(int N, long[] D) {
long[] result = new long[N];
result[0] = D[0];
long currMax = D[0];
for (int i = 1; i < N; i++) {
currMax = Math.max(D[i], currMax + D[i]);
result[i] = Math.max(result[i - 1], currMax);
}
return result;
}
Not sure but Accepted Solution didn't for work me for all the scenarios (May be I misunderstood it)
So I did small modification, instead of
if(value > 0)
I changed it yo
if(value > bestNow)
.....(I wrote it in Scala)
And it is working for the all scenarios
def findMaxSubArray(list: List[Int]): (Int, Int, Int) = {
var (bestNow,bestSoFar) = (0, 0)
var ( startIndexNow, startIndexSoFar, endIndex) = (-1, -1, -1)
for (i <- 0 until list.length) {
var value = bestNow + list(i)
if (value > bestNow) {
if (bestNow == 0)
startIndexNow = i
bestNow = value
} else
bestNow = 0
if (bestNow > bestSoFar) {
bestSoFar = bestNow
startIndexSoFar = startIndexNow
endIndex = i
}
}
return (bestSoFar, startIndexSoFar, endIndex)
}
def main(args: Array[String]) {
println(findMaxSubArray(List(3, -1, 5, 3, -6, -9, 6, 1)).toString)
println(findMaxSubArray(List(3, -1, 5, 3, -6, -9, 6, 3)).toString)
println(findMaxSubArray(List(20, -1, 5, 3, -6, -9, 6)).toString)
}
Output.....
(max =8, start=2, end=3)
(max=9, start=6, end=7)
(max=20, start=0, end= 0)
I have made a function for a little more general problem:
Find maximum sum subarray (meaning its bounds and sum, not only the sum)
If two subarrays have equal sums then pick the shorter one
If two equally long subarrays have equal sums then pick the one that appears first.
Function is based on Kadane's algorithm and it runs in O(n) time. Basically, this is it:
function MaxSumSubarray(a, n, start out, len out)
-- a - Array
-- n - Length of the array
-- start - On output starting position of largest subarray
-- len - On output length of largest subarray
-- Returns sum of the largest subarray
begin
start = 0
len = 1
int sum = a[0]
curStart = 0
curLen = 1
curSum = a[0]
for i = 2 to n
begin
if a[i] >= curSum + a[i] then
begin
curStart = i
curLen = 1
curSum = a[i]
end
else
begin
curLen = curLen + 1
curSum = curSum + a[i]
end
if (curSum > sum) OR
(curSum = sum AND curLen < len) OR
(curSum = sum AND curLen = len AND curStart < start) then
begin
start = curStart
len = curLen
sum = curSum
end
end
return sum
end
I've uploaded the whole solution in C#, with analysis and examples, in this article: Maximum Sum Subarray
Given an array of length N. How will you find the minimum length
contiguous sub-array of whose sum is S and whose product is P.
For eg 5 6 1 4 6 2 9 7 for S = 17, Ans = [6, 2, 9] for P = 24, Ans = [4 6].
Just go from left to right, and sum all the numbers, if the sum > S, then throw away left ones.
import java.util.Arrays;
public class test {
public static void main (String[] args) {
int[] array = {5, 6, 1, 4, 6, 2, 9, 7};
int length = array.length;
int S = 17;
int sum = 0; // current sum of sub array, assume all positive
int start = 0; // current start of sub array
int minLength = array.length + 1; // length of minimum sub array found
int minStart = 0; // start of of minimum sub array found
for (int index = 0; index < length; index++) {
sum = sum + array[index];
// Find by add to right
if (sum == S && index - start + 1 < minLength) {
minLength = index - start + 1;
minStart = start;
}
while (sum >= S) {
sum = sum - array[start];
start++;
// Find by minus from left
if (sum == S && index - start + 1 < minLength) {
minLength = index - start + 1;
minStart = start;
}
}
}
// Found
if (minLength != length + 1) {
System.out.println(Arrays.toString(Arrays.copyOfRange(array, minStart, minStart + minLength)));
}
}
}
For your example, I think it is OR.
Product is nothing different from sum, except for calculation.
pseudocode:
subStart = 0;
Sum = 0
for (i = 0; i< array.Length; i++)
Sum = Sum + array[i];
if (Sum < targetSum) continue;
if (Sum == targetSum) result = min(result, i - subStart +1);
while (Sum >= targetSum)
Sum = Sum - array[subStart];
subStart++;
I think that'll find the result with one pass through the array. There's a bit of detail missing there in the result value. Needs a bit more complexity there to be able to return the actual subarray if needed.
To find the Product sub-array just substitute multiplication/division for addition/subtraction in the above algorithm
Put two indices on the array. Lets call them i and j. Initially j = 1 and i =0. If the product between i and j is less than P, increment j. If it is greater than P, increment i. If we get something equal to p, sum up the elements (instead of summing up everytime, maintain an array where S(i) is the sum of everything to the left of it. Compute sum from i to j as S(i) - S(j)) and see whether you get S. Stop when j falls out of the array length.
This is O(n).
You can use a hashmap to find the answer for product in O(N) time with extra space.