Algorithm suggestion: comparing sound clips - algorithm

(Not sure if this is the right place for this question)
We are analyzing thousands of sound clips of people talking in an attempt to find patterns in the pitch, syllable rate, etc. in order to come up with a signature database to match new sound bites to emotions.
While I am familiar with some AI algorithms (Bayes, for instance) I'm curious if anyone has any ideas on the types of algorithms we could employ.
Overall concept (figure short 2-5 second .wav clips):
soundClip1 -> 'anger'
soundClip2 -> 'happy'
soundClip3 -> 'sad'
...
emotion = predict(newSoundClip)
Given a new sound clip, we would like to do something similar to Shazzam except for returning a probability that the clip represents a particular emotion.
Any suggestions would be appreciated!

Try to normalize the clips in terms of their amplitude and frequency to make them comparable.
Then measure amplitude and spectral properties like variance, autocorrelation, number of minima/maxima, etc.
These measurements allow to view each clip as a vector in an n-dimensional space. You can use cluster analysis methods to find neighbored clips. Principal component analysis (PCA) might help to find more or less meaningful property dimensions.
It takes a lot of reading pattern recognition, signal processing and cluster analysis texts to get to know what is possible.

Related

Binary classification of sensor data

My problem is the following: I need to classify a data stream coming from an sensor. I have managed to get a baseline using the
median of a window and I subtract the values from that baseline (I want to avoid negative peaks, so I only use the absolute value of the difference).
Now I need to distinguish an event (= something triggered the sensor) from the noise near the baseline:
The problem is that I don't know which method to use.
There are several approaches of which I thought of:
sum up the values in a window, if the sum is above a threshold the class should be EVENT ('Integrate and dump')
sum up the differences of the values in a window and get the mean value (which gives something like the first derivative), if the value is positive and above a threshold set class EVENT, set class NO-EVENT otherwise
combination of both
(unfortunately these approaches have the drawback that I need to guess the threshold values and set the window size)
using SVM that learns from manually classified data (but I don't know how to set up this algorithm properly: which features should I look at, like median/mean of a window?, integral?, first derivative?...)
What would you suggest? Are there better/simpler methods to get this task done?
I know there exist a lot of sophisticated algorithms but I'm confused about what could be the best way - please have a litte patience with a newbie who has no machine learning/DSP background :)
Thank you a lot and best regards.
The key to evaluating your heuristic is to develop a model of the behaviour of the system.
For example, what is the model of the physical process you are monitoring? Do you expect your samples, for example, to be correlated in time?
What is the model for the sensor output? Can it be modelled as, for example, a discretized linear function of the voltage? Is there a noise component? Is the magnitude of the noise known or unknown but constant?
Once you've listed your knowledge of the system that you're monitoring, you can then use that to evaluate and decide upon a good classification system. You may then also get an estimate of its accuracy, which is useful for consumers of the output of your classifier.
Edit:
Given the more detailed description, I'd suggest trying some simple models of behaviour that can be tackled using classical techniques before moving to a generic supervised learning heuristic.
For example, suppose:
The baseline, event threshold and noise magnitude are all known a priori.
The underlying process can be modelled as a Markov chain: it has two states (off and on) and the transition times between them are exponentially distributed.
You could then use a hidden Markov Model approach to determine the most likely underlying state at any given time. Even when the noise parameters and thresholds are unknown, you can use the HMM forward-backward training method to train the parameters (e.g. mean, variance of a Gaussian) associated with the output for each state.
If you know even more about the events, you can get by with simpler approaches: for example, if you knew that the event signal always reached a level above the baseline + noise, and that events were always separated in time by an interval larger than the width of the event itself, you could just do a simple threshold test.
Edit:
The classic intro to HMMs is Rabiner's tutorial (a copy can be found here). Relevant also are these errata.
from your description a correctly parameterized moving average might be sufficient
Try to understand the Sensor and its output. Make a model and do a Simulator that provides mock-data that covers expected data with noise and all that stuff
Get lots of real sensor data recorded
visualize the data and verify your assuptions and model
annotate your sensor data i. e. generate ground truth (your simulator shall do that for the mock data)
from what you learned till now propose one or more algorithms
make a test system that can verify your algorithms against ground truth and do regression against previous runs
implement your proposed algorithms and run them against ground truth
try to understand the false positives and false negatives from the recorded data (and try to adapt your simulator to reproduce them)
adapt your algotithm(s)
some other tips
you may implement hysteresis on thresholds to avoid bouncing
you may implement delays to avoid bouncing
beware of delays if implementing debouncers or low pass filters
you may implement multiple algorithms and voting
for testing relative improvements you may do regression tests on large amounts data not annotated. then you check the flipping detections only to find performance increase/decrease

How to detect how similar a speech recording is to another speech recording?

I would like to build a program to detect how close a user's audio recording is to another recording in order to correct the user's pronunciation. For example:
I record myself saying "Good morning"
I let a foreign student record "Good morning"
Compare his recording to mine to see if his pronunciation was good enough.
I've seen this in some language learning tools (I believe Rosetta Stone does this), but how is it done? Note we're only dealing with speech (and not, say, music). What are some algorithms or libraries I should look into?
A lot of people seem to be suggesting some sort of edit distance, which IMO is a totally wrong approach for determining the similarity of two speech patterns, especially for patterns as short as OP is implying. The specific algorithms used by speech-recognition in fact are nearly the opposite of what you would like to use here. The problem in speech recognition is resolving many similar pronunciations to the same representation. The problem here is to take a number of slightly different pronunciations and get some kind of meaningful distance between them.
I've done quite a bit of this stuff for large scale data science, and while I can't comment on exactly how proprietary programs do it, I can comment on how it's done in academia and provide a solution that is straightforward and will give you the power and flexibility that you want for this approach.
Firstly: Assuming that what you have is some chunk of audio without any filtering done on it. Just as it would be acquired from a microphone. The first step is to eliminate background noise. There are a number of different methods for this, but I'm going to assume that what you want is something that will work well without being incredibly difficult to implement.
Filter the audio using scipy's filtering module here. There are a lot of frequencies that microphones pick up that are simply not useful for categorizing speech. I would suggest either a Bessel or a Butterworth filter to ensure that your waveform is persevered through filtering. The fundamental frequencies for everyday speech are generally between 800 and 2000 Hz (reference) so a reasonable cutoff would be something like 300 to 4000 Hz, just to make sure you don't lose anything.
Look for the least active portion of speech and assume that is a reasonable representation of background noise. At this point you're going to want to run a series of fourier transforms along your data (or generate a spectrogram) and find the part of your speech recording that has the lowest average frequency response. Once you have that snapshot, you should subtract it from all other points in your audio sample.
At this point should should have an audio file that is mostly just your user's speech and should be ready to be compared to another file that has gone through this process. Now, we want to actually clip the sound and compare this clip to some master clip.
Secondly: You're going to want to come up with a distance metric between two speech patterns, there are a number of ways to do this, but I'm going to assume we have the output of part one and some master file that has been through similar processing.
Generate a spectrogram of the audio file in question (example). The output from this is ultimately going to be an image that can be represented as a 2-d array of frequency response values. A spectrogram is essentially a fourier transform over time where the colour corresponds to intensity.
Use OpenCV (has python bindings, example) to run blob detection on your spectrogram. Effectively this is going to look for the big colorful blob in the middle of your spectrogram, and give you some limits on this. Effectively, what this should do, is return a significantly more sparse version of the original 2d-array that solely represents the speech in question. (With the assumption that your audio file will have some trailing stuff on the front and back ends of recording)
Normalize the two blobs to account for differences in speech speed. Everyone talks at a different speeds, and as such your blobs will probably have different sizes along the x-axis (time). This will ultimately introduce a level of checks in your algorithm that you don't want for the speed of speech. This step isn't needed if you also want to make sure that they speak at the same speed as the master copy, but I would suggest it. Basically you want to stretch out the shorter version by multiplying it's time axis by some constant that's just the ratio of the lengths of your two blobs.
You should also normalize the two blobs based on maximum and minimum intensity to account for people that talk at different volumes. Again, this is up to your discretion, but to fix this you should find similar ratios for the total span of intensities that you have as well as the two recording's max intensities and make sure that these two values match up between your 2-d arrays.
Third: Now that you have 2-d arrays representing your two speech events, that should in theory contain all of their useful information it's time to directly compare them. Luckily, comparing two matrices is a well-solved problem and there are a number of ways to move forward.
Personally I would suggest using a metric like Cosine Similarity to determine the difference between your two blobs, but that's not the only solution and while it'll give you a quick validation, you can do better.
You could try subtracting one matrix from the other and get an evaluation of how much difference there is between them, which would probably be more accurate than simple cosine distance.
It might be overkill, but you could assume that there are certain regions of speech that matter more or less for evaluating difference between blobs (it might not matter if someone uses a long i instead of a short i, but a g instead of a k could be a different word entirely). For something like that you'd want to develop a mask for the difference array in the previous step and multiply all your values by that.
Whichever method you choose, you can now simply set some difference threshold and make sure that the difference between the two blobs is below your desired threshold. If it is, the captured speech is similar enough to be correct. Otherwise have them try again.
I hope that's helpful, and again, I can't assure you that this is the exact algorithm that a company uses since that information is hugely proprietary and not open for the public, but I can assure you that methods similar to these are used in the very best papers in academia and that these methods will get you a great balance of accuracy and ease of implementation. Let me know if you have any questions, and good luck with your future data science exploits!
The musicg api https://code.google.com/p/musicg/
has a audio fingerprint generator and scorer
along with source code to show how its done.
I think it looks for the most similar point in each track, then scores based on how far it can match.
It might look something like
import com.musicg.wave.Wave
com.musicg.fingerprint.FingerprintSimilarity
com.musicg.fingerprint.FingerprintSimilarityComputer
com.musicg.fingerprint.FingerprintManager
double score =
new FingerprintsSimilarity(
new Wave("voice1.wav").getFingerprint(),
new Wave("voice2.wav").getFingerprint() ).getSimilarity();
Idea:
The way biotechnologists align two protein sequences is as follows: Each sequence is represented as a string on an alphabet as(A/C/G/T - these are different types of proteins, irrelevant for us), where each letter (here, an entry) represents a particular amino acid. The quality of an alignment (its score) is calculated from the similarity of each pair of corresponding entries, and the number and length of the blank entries that need to be inserted to produce that alignment.
Same algorithm (http://en.wikipedia.org/wiki/Needleman-Wunsch_algorithm) can be used for pronunciation, from substitution frequencies in a set of alternate pronunciations. Then you can calculate alignment scores to measure the similarity between the two pronunciations in a way that is sensitive to the differences between phonemes. Measures of similarity that can be used here are Levenshtein distance, phoneme error rate, and word error rate.
Algorithms
The minimum number of insertions, deletions and substitutions required for transformation of one sequence into another is the Levenshtein distance. More info at http://php.net/manual/en/function.levenshtein.php
Phoneme error rate (PER) is the Levenshtein distance between a predicted pronunciation and the reference pronunciation, divided by the number of phonemes in the reference pronunciation.
Word error rate (WER) is the proportion of predicted pronunciations with at least one phoneme error to the total number of pronunciations.
Source: Did an Internship on this at UW-Madison
A carefully configured Levenshtein distance should do the trick.
I know this question is out of date but...
To solve a similar problem I used Google Speech Recognized API to check WHAT was said and visual compare scaled wave forms of volume changes to detect differences in rhythm.
Code & video of the result.
you can use Musicg https://code.google.com/p/musicg/ as roy zhang suggested. In android, just include musicg jar file in your android project and use it. A tested example:
import com.musicg.wave.Wave;
import com.musicg.fingerprint.FingerprintSimilarity;
//somewhere in your code add
String file1 = Environment.getExternalStorageDirectory().getAbsolutePath();
file1 += "/test.wav";
String file2 = Environment.getExternalStorageDirectory().getAbsolutePath();
file2 += "/test.wav";
Wave w1 = new Wave(file1);
Wave w2 = new Wave(file2);
FingerprintSimilarity fps = w1.getFingerprintSimilarity(w2);
float score = fps.getScore();
float sim = fps.getSimilarity();
Log.d("score", score+"");
Log.d("similarities", sim+"");
Good luck
If this is only to check the pronunciation [of course with different accent], you can do this :
Step 1 : Using some voice tool [say dragon dictation], you can have the text with you.
Step 2 : Compare the string or the word formed and compare it with the string that actually was meant to be pronounced.
Step 3 : If you find any discrepancy in the strings, means the word was not spelled correctly. And you can suggest the correct pronunciation.
You have to look into speech recognition algorithms. I understand that you don't need to translate speech to text (that is done by speech recognition algorithms), however, in your case many algorithms would be the same.
Probably, HMM would be helpful here (hidden markov models).
Also look into here: http://htk.eng.cam.ac.uk/

Edge detection : Any performance evaluation technique?

I am working on edge detection in images and would like to evaluate the performance of algorithm, if any any one could give me a reference or method on how to proceed it will be really helpful. :)
I do not have ground truth and data set includes color as well as gray images.
Thank you.
Create a synthetic data set with known edges, for example by 3D rendering, by compositing 2D images with precise masks (as may be obtained in royalty free photosets), or by introducing edges directly (thin/faint lines). Remember to add some confounding non-edges that look like edges, of a type appropriate for what you're tuning for.
Use your (non-synthetic) data set. Run the reference algorithms that you want to compare against. Also produce combinations of the reference algorithms, for example by voting (majority, at least K out of N, etc). Calculate stats on your algo vs reference algo performance, in terms of (a) number of points your algo classifies as edge which each reference algo, or the combination, does not classify as edge (false positive), or (b) number of points which the reference algo classifies as edge that your algo does not (false negative). You can also calculate a rank correlation-type number for algos by looking at each point and looking at which algos do (or don't) classify that as an edge.
Create ground truth manually. Use reference edge-finding algos as a starting point, then fix up by hand. Probably valuable to do for a small number of images in any case.
Good luck!
For comparisons, quantitative measures like what #Alex I explained is best. To do so, you need to define what is "correct" with a ground truth set and a way to consistently determine if a given image is correct or on a more granular level, how correct (some number like a percentage) it is. #Alex I gave a way to do that.
Another option that is often used in graphics research where there is no ground truth is user studies. Usually less desirable as they are time consuming and often more costly. However, if it is a qualitative improvement that you are after or if a quantitative measurement is just too hard to do, a user study is an appropriate solution.
When I mean user study I mean to poll people on how well a result is given the input image. You could give them a scale to rate things on and randomly give them samples from both your results and the results of another algorithm
And of course, if you still want more ideas, be sure to check out edge detection papers to see how they measured their results (I'd actually look here first as they've already gone through this same process and determined what was best for them: google scholar).

Algorithms needed on filtering the noise caused by the vibration

For example you measure the data coming from some device, it can be a mass of the object moving on the bridge. Because it is moving the mass will give data which will vibrate in some amplitude depending on the mass of the object. Bigger the mass - bigger the vibrations.
Are there any methods for filtering such kind of noise from that data?
May be using some formulas of vibrations? Have no idea what kind of formulas or algorithms (filters) can be used here. Please suggest anything.
EDIT 2:
Better picture, I just draw it for better understanding:
Not very good picture. From that graph you can see that the frequency is the same every
time, but the amplitude chanbges periodically. Something like that I have when there are no objects on the moving road. (conveyer belt). vibrating near zero value.
When the object moves, I there are the same waves with changing amplitude.
The graph can tell that there may be some force applying to the system and which produces forced occilations. So I am interested in removing such kind of noise. I do not know what force causes such occilations. Soon I hope I will get some data on the non moving road with and without object on it for comparison with moving road case.
What you have in your last plot is basically an amplitude modulated oscillation coming from a function like:
f[x] := 10 * (4 + Sin[x]) * Sin[80 * x]
The constants have been chosen to match your plot (using just a rule of thumb)
The Plot of this function is
That isn't "noise" (although may be some noise is there too), but can be filtered easily.
Let's see your data for the static and moving payloads ....
Edit
Based on your response to several comments, and based in my previous experience with weighting devices:
You are interfacing the physical world, not just getting input from a mouse and keyboard. It is very important for you understand the device, how it works and how it is designed.
You need a calibration procedure. You have to use several master weights to be sure that the device is working properly and linearly in the whole scale, and that the static case is measured much better than your dynamic needs.
You'll not be able to predict if you can measure with several loads in the conveyor until you do some experiments and look very carefully at the resulting plots
You need to be sure that a load placed anywhere in the conveyor shows the same reading. Or at least you should be able to correlate reading and position.
As I said before, you need a lot of info, and it seems that is not available. I always worked as a team with the engineers designing the device.
Don't hesitate to add more info ...
Have you tried filters with lowpass characteristics? There are different approaches for smoothing data (i.e. Savitzky-Golay, Gauss, moving average) but often, a simple N-point median filter is already sufficient.
It really depends on what you're after.
Take a look at this book:
The Scientist and Engineer's Guide to Digital Signal Processing
You can download it for free. In particular, check chapters 14 and 15.
If the frequency changes with mass and you're trying to measure mass, why not measure the frequency of the oscillations and use that as your primary measure?
Otherwise you need a notch filter which is tunable - figure out the frequency of the "noise" and tune the notch filter to that.
Another book to try is Lyons Understanding Digital Signal Processing
In order to smooth the signal, I'd average the previous 2 * n samples where n is the maximum expected wavelength of the vibrations.
This should cause most of the noise to be eliminated.
If you have some idea of the range of frequencies, you could do a simple average as long as the measurement period were sufficiently long to give you the level of accuracy you want to achieve. The more wavelengths worth of data you average against, the smaller the ratio of contributed error from a partial wavelength.
I'd suggest first simulating/modeling this in software like Matlab.
Data you'll need to consider:
The expected range of vibration frequencies
The measurement accuracy you want to achieve
The expected range of mass you'll want to measure
The function of mass to vibration amplitude
You should be able to apply the same principles as noise-cancelling microphones: put two sensors out, then subtract the secondary sensor's (farther away from the good signal source) signal from the primary sensor's (closer to the good signal source) signal.
Obviously, this works best if the "noise" will reach both sensors fairly equally while the "signal" reaches the primary sensor much more strongly.
For things like sound, this is pretty easy to do in the sensor itself, which makes your software a lot easier and more performant. Depending on what you're measuring, this might be easier to do with multiple sets of hardware and doing the cancellation in software.
If you can characterize the frequency spectra of the unwanted vibration noise, you might be able to synthesize a set of (near) minimum phase notch or band reject filter(s) to allow you to acquire your desired signal at your desired S/N ratio with minimized latency or data set size.
Filtering noisy digital signals is straight forward, as previous posters have noted. There are lots of references. You have not however stated what your objectives are clearly, so we cannot point you into a good direction. Are you looking for a single measurement of a single object on a bridge? [Then see other answers].
Are you monitoring traffic on this bridge and weighing each entity as it passes by? Then you need to determine when entities are on the sensor and when they are not. Typically, as long as the sensor's noise floor is significantly lower than the signal you're measuring this can be accomplished by simple thresholding.
Are you trying to measure the vibrations of the bridge caused by other vehicles? In which case you need either a more expensive sensor if you're having problems doing this, or a clearer measuring objective.

Perceptual similarity between two audio sequences

I would like to get some sort of distance measure between two pieces of audio. For example, I want to compare the sound of an animal to the sound of a human mimicking that animal, and then return a score of how similar the sounds were.
It seems like a difficult problem. What would be the best way to approach it? I was thinking to extract a couple of features from the audio signals and then do a Euclidian distance or cosine similarity (or something like that) on those features. What kind of features would be easy to extract and useful to determine the perceptual difference between sounds?
(I saw somewhere that Shazam uses hashing, but that's a different problem because there the two pieces of audio being compared are fundamentally the same, but one has more noise. Here, the two pieces of audio are not the same, they are just perceptually similar.)
The process for comparing a set of sounds for similarities is called Content Based Audio Indexing, Retrieval, and Fingerprinting in computer science research.
One method of doing this is to:
Run several bits of signal processing on each audio file to extract features, such as pitch over time, frequency spectrum, autocorrelation, dynamic range, transients, etc.
Put all the features for each audio file into a multi-dimensional array and dump each multi-dimensional array into a database
Use optimization techniques (such as gradient descent) to find the best match for a given audio file in your database of multi-dimensional data.
The trick to making this work well is which features to pick. Doing this automatically and getting good results can be tricky. The guys at Pandora do this really well, and in my opinion they have the best similarity matching around. They encode their vectors by hand though, by having people listen to music and rate them in many different ways. See their Music Genome Project and List of Music Genome Project attributes for more info.
For automatic distance measurements, there are several projects that do stuff like this, including marsysas, MusicBrainz, and EchoNest.
Echonest has one of the simplest APIs I've seen in this space. Very easy to get started.
I'd suggest looking into spectrum analysis. Whilst this isn't as straightforward as you're most likely wanting, I'd expect that decomposing the audio into it's underlying frequencies would provide some very useful data to analyse. Check out this link
Your first step will definitely be taking a Fourier Transform(FT) of the sound waves. If you perform an FT on the data with respect to Frequency over Time1, you'll be able to compare how often certain key frequencies are hit over the course of the noise.
Perhaps you could also subtract one wave from the other, to get a sort of stepwise difference function. Assuming the mock-noise follows the same frequency and pitch trends2 as the original noise, you could calculate the line of best fit to the points of the difference function. Comparing the best fit line against a line of best fit taken of the original sound wave, you could average out a trend line to use as the basis of comparison. Granted, this would be a very loose comparison method.
- 1. hz/ms, perhaps? I'm not familiar with the unit magnitude being worked with here, I generally work in the femto- to nano- range.
- 2. So long as ∀ΔT, ΔPitch/ΔT & ΔFrequency/ΔT are within some tolerance x.
- Edited for formatting, and because I actually forgot to finish writing the full answer.

Resources