Invoking proxied DAO methods from Spring stand alone client :- could not initialize proxy - no Session - spring

I have a third party jar in my class path which has some services and DAO's developed on top of Spring 2.0.6 and Hibernate3.2.6. I need to call some of the services and daos.
Using ClassPathXmlApplicationContext I'm able to load the application context and able to access the services and daos. Both the service and dao are following ProxyFactoryBean pattern.
Problem comes when I'm accessing a DAO which has some single valued associations.When I'm accessing associated entity I'm getting lazy initialization problem.
To solve this problem:- If it is in my own application JAR I'll be able to change the fetch type into join or in DAOImpl method I could use Hibernate.initialize().
Is there a way to avoid this problem from the stand alone code itself? Or any other way to solve this issue without modifying applicationContext.xml and DAOImpl

You need to put the caller method into one single transaction.
If you have Spring transactional environment, you can put the call of the DAO services/repositories in your own service/method which is marked as #Transactional, or if transaction support is not enabled, but you still have spring support in your application, you can just use TransactionTemplate directly, provided by spring
#Autowire
private PlatformTransactionManager txManager;
TransactionTemplate template = new TransactionTemplate(this.txManager);
template.execute( new TransactionCallback<Object>(){
public void doInTransaction(TransactionStatus status){
// work done here will be wrapped by a transaction and committed.
// status.setRollbackOnly(true) is called or an exception is thrown
}
});
Otherwise you have manually handle transactionality by your own , depending on the technologies your app is using.

Related

What is the replacement of EJB SessionContext object in spring boot?

I am migrating an EJB project to Spring boot project. I have successfully replaced other annotations to the spring annotation, but havving problem with SessionContext object.
My legacy code is bellow
#Resource
SessionContext sessionContext;
.....
if (some condition) {
sessionContext.setRollbackOnly();
return false;
}
For this code i am getting the following error
A component required a bean of type 'javax.ejb.SessionContext' that could not be found.
Action:
Consider defining a bean of type 'javax.ejb.SessionContext' in your configuration.
I think you'll have to use a few different functionalities.
setRollbackOnly()
Most often I have seen Session Context used for Rollbacks. In Spring, you can replace this with:
TransactionAspectSupport.currentTransactionStatus().setRollbackOnly();
or annotate class with
#Transactional(rollbackFor = MyException.class)
so you can throw your exception from class to cause rollback.
getBusinessObject()
The second most commonly used feature is method to load a business object so that I can, for example, create a new transaction within a same bean. In this case you can use Self-inject:
#Lazy private final AccountService self;
and annote method with #Transactional. This, of course, solves any other cases where you need to use the power of a proxy object.
Other functionality is provided by other classes in Spring, but I think that these two are the most commonly used in the Java EE world and when migrating, one will look to replace them in Spring.

Understanding Spring AOP and Transaction Aspect

I was studying about the Proxy Object which spring gives when we autowire any interface. This is a very good link for understanding that https://www.youtube.com/watch?v=bEvGdWjeCy4&t=310s. Here he explains that If a POJO implements any interface then Spring proxy bean also implements that interface (using JDK Proxy mechanism) and adds additional logic such as transactional logic (if the method was annotated using jdbc code or delegating it to PlatformTransactionManager). Spring gives us a wrapper object which has the reference to the real object and it has additional code which it runs before and after the original method is invoked using MethodInvocationHandler. So My question is that how exactly spring is managing that transaction.Where that jdbc code to get connection and start transaction is written. Is it in the Spring Proxy object or any Aspect Class.
As in AOP there as Aspects which are basically the cross cutting concerns such as transaction common to the whole application. Is Spring inserting Transaction behavior code in the Proxy Object or is it Using PlatformTransactionManager to do that And Where does This AOP fits in this Flow. How the Aspect handling Transactional behavior getting invoked here if it is. How the call is getting transferred to it?
In term of JDK proxy , you have to supply a InvocationHandler implementation when creating a proxy object. When the proxy object is invoked , this InvocationHandler will be invoked around the actual object. (see this for a hello world example for how does JDK proxy works)
In term of the spring transaction , it already shipped with an InvocationHandler implementation (i.e. JdkDynamicAopProxy). It will then somehow invoke the transaction aspect (i.e. TransactionInterceptor). The transaction aspect is responsible for controlling the whole workflow such as when to create , commit or rollback the transaction and when to actually execute the actual method etc.
The transaction aspect also delegates to the PlatformTransactionManager to actually start , commit and rollback a transaction. Because different technologies has their own ways to start , commit and rollback a transaction , it is necessary to introduce a PlatformTransactionManager as an interface to abstract these operations such that we can switch different transaction technology by simply switching the PlatformTransactionManager implementation inside the transaction aspect .
So back to your questions :
Where that jdbc code to get connection and start transaction is
written. Is it in the Spring Proxy object or any Aspect Class.
None of them. It is actually the PlatformTransactionManager to get the connection and start the transaction which is invoked by the aspect.
Is Spring inserting Transaction behaviour code in the Proxy Object or
is it Using PlatformTransactionManager to do that And Where does This
AOP fits in this Flow.
Spring inserts the transaction behaviour in the aspect object (i.e. TransactionInterceptor). The aspects then delegate to the PlatformTransactionManager to actually start , commit and rollback the transaction.
How the Aspect handling Transactional behaviour getting invoked here
if it is. How the call is getting transferred to it?
Assuming the JDK proxy is used , the call flow is something like :
Someone invokes on the JDK proxy
InvocationHandler of this proxy will be invoked (i.e JdkDynamicAopProxy)
InvocationHandler somehow calls spring transaction aspect (i.e TransactionInterceptor)
Transaction aspect delegates to PlatformTransactionManager to actually start , commit and rollback the transaction if necessary.

Spring DefaultAdvisorAutoProxyCreator with #Transactional causing problems

I'm working on a Spring MVC project and trying to integrate Apache Shiro for the security. Everything was going just swimmingly until I realized Hibernate was prematurely closing the session/connection after a single query and causing a lazyinit exception. Not surprising, what I was doing should be done within a transaction so the session isn't closed.
Dilemmas…
I tried putting #Transactional on my controller method, but I get 404's then. Looking at my logs, I can see that when Spring is bootstrapping it ignores any mappings in my HomeController if that #Transactional annotation is on any method within the controller.
Without the #Transactional and it loads up just fine, and Ih can see the RequestMappingHandlerMapping bean sees all the #RequestMapping annotations in my controller.
With #Transactional but without DefaultAdvisorAutoProxyCreator, and it works except Shiro annotations are simply ignored.
tldr: Shiro requires DefaultAdvisorAutoProxyCreator, but if I create that bean, Spring blows up when using the #Transactional annotation.
I'm asking for help because I'm completely at a loss for how to proceed at this point.
This is typically because when you put #Transactional on a method, Spring creates a dynamic proxy for that bean - if the bean implements an interface then dynamic proxy is created based on that interface, otherwise CGLIB will be used for creating the proxy.
The problem in your case, I am guessing is because you probably have based your controller on some interface, or you are extending it based on a base class. This is ending up creating a proxy based on that interface, because of this when it comes time for mappings to be created for your request, Spring MVC is probably not finding your mappings from your bean.
The fix could be a few:
a. You can try and force proxies to be based on CGLIB for your transactions:
<tx:annotation-driven transaction-manager="transactionManager" proxy-target-class="true"/>
b. You can use pure Aspectj,either load time weaving or compile time weaving
c. You can move the #Transactional into a Service (which has an interface) and delegate the call from the controller to the service, this way avoiding #Transaction on the controller

Autowired spring bean is not a proxy

I'm working on a very small application connecting to a MySQL database.
I'm trying to create table record but getting 'no transaction in progress'.
I have all the right stuff in place:
a service interface MyService and its implementation MyServiceImpl
I have annotated the service impl with #Service
In the controller I used the interface name for the field #Autowired MyService
I have the correct transaction configuration as it was originally generated by roo
There is a public method MyService.create(...) which MyServiceImpl implements
But,
When I remote debug and inspect the controller's myService field what I see is something like
com.some.package.services.MyService#12345 (and NOT something like $Proxy73) which to me is not right, because what should be autowired is the proxy not he target bean (which is what I think this is). If I'm correct then it makes sense that there is no transaction as the annotation would only kick in when invoking a public method annotated with #Transactional on a proxy.
Please tell me why is spring injecting the target bean in this setup.
Thanks
If you have AspectJ-enabled transaction management (<tx:annotation-driven mode="aspectj" .../>) application of transactions happens in-place in the same class, either during build (compile-time weaving) or on startup (load-time weaving).
No new classes are created (like when using cglib) and no proxies (like with ordinary interface-based AOP in Spring). Instead bytecode of MyServiceImpl was modified directly without you even noticing. Unfortunately the only way to see AOP is to decompile your classes. If you use javap -c MyServiceImpl you'll find plenty of references to Spring transaction layer.
If you are using Spring MVC, make sure to scan specific controller classes alone in servlet context file. Otherwise it will scan 2 times and transaction is not available on the application context.

How do you use Spring Data JPA outside of a Spring Container?

I'm trying to wire up Spring Data JPA objects manually so that I can generate DAO proxies (aka Repositories) - without using a Spring bean container.
Inevitably, I will be asked why I want to do this: it is because our project is already using Google Guice (and on the UI using Gin with GWT), and we don't want to maintain another IoC container configuration, or pull in all the resulting dependencies. I know we might be able to use Guice's SpringIntegration, but this would be a last resort.
It seems that everything is available to wire the objects up manually, but since it's not well documented, I'm having a difficult time.
According to the Spring Data user's guide, using repository factories standalone is possible. Unfortunately, the example shows RepositoryFactorySupport which is an abstract class. After some searching I managed to find JpaRepositoryFactory
JpaRepositoryFactory actually works fairly well, except it does not automatically create transactions. Transactions must be managed manually, or nothing will get persisted to the database:
entityManager.getTransaction().begin();
repositoryInstance.save(someJpaObject);
entityManager.getTransaction().commit();
The problem turned out to be that #Transactional annotations are not used automatically, and need the help of a TransactionInterceptor
Thankfully, the JpaRepositoryFactory can take a callback to add more AOP advice to the generated Repository proxy before returning:
final JpaTransactionManager xactManager = new JpaTransactionManager(emf);
final JpaRepositoryFactory factory = new JpaRepositoryFactory(emf.createEntityManager());
factory.addRepositoryProxyPostProcessor(new RepositoryProxyPostProcessor() {
#Override
public void postProcess(ProxyFactory factory) {
factory.addAdvice(new TransactionInterceptor(xactManager, new AnnotationTransactionAttributeSource()));
}
});
This is where things are not working out so well. Stepping through the debugger in the code, the TransactionInterceptor is indeed creating a transaction - but on the wrong EntityManager. Spring manages the active EntityManager by looking at the currently executing thread. The TransactionInterceptor does this and sees there is no active EntityManager bound to the thread, and decides to create a new one.
However, this new EntityManager is not the same instance that was created and passed into the JpaRepositoryFactory constructor, which requires an EntityManager. The question is, how do I make the TransactionInterceptor and the JpaRepositoryFactory use the same EntityManager?
Update:
While writing this up, I found out how to solve the problem but it still may not be the ideal solution. I will post this solution as a separate answer. I would be happy to hear any suggestions on a better way to use Spring Data JPA standalone than how I've solve it.
The general principle behind the design of JpaRepositoryFactory and the according Spring integration JpaRepositoryFactory bean is the following:
We're assuming you run your application inside a managed JPA runtime environment, not caring about which one.
That's the reason we rely on injected EntityManager rather than an EntityManagerFactory. By definition the EntityManager is not thread safe. So if dealt with an EntityManagerFactory directly we would have to rewrite all the resource managing code a managed runtime environment (just like Spring or EJB) would provide you.
To integrate with the Spring transaction management we use Spring's SharedEntityManagerCreator that actually does the transaction resource binding magic you've implemented manually. So you probably want to use that one to create EntityManager instances from your EntityManagerFactory. If you want to activate the transactionality at the repository beans directly (so that a call to e.g. repo.save(…) creates a transaction if none is already active) have a look at the TransactionalRepositoryProxyPostProcessor implementation in Spring Data Commons. It actually activates transactions when Spring Data repositories are used directly (e.g. for repo.save(…)) and slightly customizes the transaction configuration lookup to prefer interfaces over implementation classes to allow repository interfaces to override transaction configuration defined in SimpleJpaRepository.
I solved this by manually binding the EntityManager and EntityManagerFactory to the executing thread, before creating repositories with the JpaRepositoryFactory. This is accomplished using the TransactionSynchronizationManager.bindResource method:
emf = Persistence.createEntityManagerFactory("com.foo.model", properties);
em = emf.createEntityManager();
// Create your transaction manager and RespositoryFactory
final JpaTransactionManager xactManager = new JpaTransactionManager(emf);
final JpaRepositoryFactory factory = new JpaRepositoryFactory(em);
// Make sure calls to the repository instance are intercepted for annotated transactions
factory.addRepositoryProxyPostProcessor(new RepositoryProxyPostProcessor() {
#Override
public void postProcess(ProxyFactory factory) {
factory.addAdvice(new TransactionInterceptor(xactManager, new MatchAlwaysTransactionAttributeSource()));
}
});
// Create your repository proxy instance
FooRepository repository = factory.getRepository(FooRepository.class);
// Bind the same EntityManger used to create the Repository to the thread
TransactionSynchronizationManager.bindResource(emf, new EntityManagerHolder(em));
try{
repository.save(someInstance); // Done in a transaction using 1 EntityManger
} finally {
// Make sure to unbind when done with the repository instance
TransactionSynchronizationManager.unbindResource(getEntityManagerFactory());
}
There must be be a better way though. It seems strange that the RepositoryFactory was designed to use EnitiyManager instead of an EntityManagerFactory. I would expect, that it would first look to see if an EntityManger is bound to the thread and then either create a new one and bind it, or use an existing one.
Basically, I would want to inject the repository proxies, and expect on every call they internally create a new EntityManager, so that calls are thread safe.

Resources