Related
This recursion should slice IL to IR out of the list Lin and hand result LOut...
slice(_,IL,IR,LOut) :-
IR<IL,
[LOut].
slice(Lin,IL,IR,LOut) :-
nth0(IL,Lin,X),
append(LOut,[X],LOut2),
IK is IL + 1,
slice(Lin,IK,IR,LOut2).
Input / Output:
?- slice([1,2,3,4],2,3,X).
ERROR: source_sink `'3'' does not exist
ERROR: source_sink `'4'' does not exist
X = [] .
I m also new to Prolog, but I think this recursion must somehow work. Also I'm not really known to the error codes in Prolog, but after checking multiple times I just have to give up... I hope you guys can help me.
slice(_,IL,IR,LOut) :-
IR<IL,
[LOut]. % <-- this line causes source_sink error.
That syntax [name] tries to load the file name.pl as Prolog source code. By the time your code gets there, LOut is [3,4] so it tries to load the files 3.pl and 4.pl, and they don't exist (thankfully, or else who knows what they could do).
I think this recursion must somehow work
It won't; you are appending to a list as you go down into the recursion, which means you will never see the result.
The following might be a close version which works, at least one way:
slice(_,IL,IR,[]) :-
IR < IL.
slice(Lin,IL,IR,[X|LOut]) :-
IR >= IL,
nth0(IL,Lin,X),
IK is IL + 1,
slice(Lin,IK,IR,LOut).
?- slice([0,1,2,3,4,5,6,7,8,9], 2, 5, X).
X = [2, 3, 4, 5]
See how [X|LOut] in the second rule's header puts X in the result that you get, and append/3 is not needed, and LOut finishes down in the recursion eventually as [] the empty list from the first rule, and all the X's are prepended on the front of it to make the result on the way down into the recursion, which is tail recursion, so it doesn't need to go back up, only forward, since there's nothing left to be done after the recursive call.
Since the "cons" is done before the recursion, this is known as "tail recursion modulo cons" in other languages, but in Prolog it is just tail, and the list is being built top-down on the way forward, as opposed to being built bottom up on the way back:
Lin=[0,1,2,3,4,5,6,7,8,9], slice( Lin, 2, 5, R)
:-
nth0(2,Lin,X2), R=[X2|R2], slice( Lin, 3, 5, R2)
:-
nth0(3,Lin,X3), R2=[X3|R3], slice( Lin, 4, 5, R3)
:-
nth0(4,Lin,X4), R3=[X4|R4], slice( Lin, 5, 5, R4)
:-
nth0(5,Lin,X5), R4=[X5|R5], slice( Lin, 6, 5, R5)
:-
R5 = [].
I think findall/3 provides a readable readable solution for your problem:
slice(Lin,IL,IR,LOut) :-
findall(E,(nth0(P,Lin,E),between(IL,IR,P)),LOut).
yields
?- slice([1,2,3,4],2,3,X).
X = [3, 4].
If you expect a different outcome, use standard arithmetic comparison operators (=<,>=) instead of between/3.
I think you want:
list_elems_slice(Start, End, Lst, Slice) :-
list_elems_slice_(Lst, 1, Start, End, Slice).
list_elems_slice_([H|T], N, N, End, [H|Slice]) :-
list_elems_slice_capture_(T, N, End, Slice).
list_elems_slice_([_|T], N, Start, End, Slice) :-
N1 is N + 1,
list_elems_slice_(T, N1, Start, End, Slice).
list_elems_slice_capture_(_, N, N, []).
list_elems_slice_capture_([H|T], N, End, [H|Slice]) :-
N1 is N + 1,
list_elems_slice_capture_(T, N1, End, Slice).
Result in swi-prolog:
?- list_elems_slice(S, E, [a,b,c], Slice).
S = E, E = 1,
Slice = [a] ;
S = 1,
E = 2,
Slice = [a, b] ;
S = 1,
E = 3,
Slice = [a, b, c] ;
S = E, E = 2,
Slice = [b] ;
S = 2,
E = 3,
Slice = [b, c] ;
S = E, E = 3,
Slice = [c] ;
false.
Assuming that the point of this exercise is to teach you to think recursively, I would approach the problem as follows.
To get what you want is essentially two separate operations:
You first must discard some number of items from the beginning of the list, and then
Take some number of items from what's left over
That gives us discard/3:
discard( Xs , 0 , Xs ) .
discard( [_|Xs] , N , Ys ) :- N > 0 , N1 is N-1, discard(Xs,N1,Ys) .
and take/3, very nearly the same operation:
take( _ , 0 , [] ) .
take( [X|Xs] , N , [Y|Ys] ) :- N > 0 , N1 is N-1, take(Xs,N1,Ys) .
Once you have those two simple predicates, slice/4 itself is pretty trivial:
%
% slice( List , Left, Right, Sublist )
%
slice( Xs, L, R, Ys ) :- % to slice a list,
L =< R, % - the left offset must first be less than or equal to the right offset
N is R-L, % - compute the number of items required, and then
discard(Xs,L,X1), % - discard the first L items, and
take(X1,N,Ys). % - take the next N items
. % Easy!
Another approach would be to use append/3:
slice( Xs , L, R, Ys ) :-
length(Pfx,L), % - construct of list of the length to be discarded
append(Pfx,Sfx,Xs), % - use append to split Xs
N is R-L, % - compute the number of items required
length(Ys,N), % - ensure Ys is the required length
append(Ys,_,Sfx) % - use append to split off Ys
. % Easy!
Say I have these DCGs:
zorbs([H|T]) --> zorb(H), zorbs(T).
zorbs([]) --> [].
zorb(a) --> [1,2].
zorb(b) --> [3].
zorb(c) --> [6,1,2,2].
I can do this:
?- phrase(zorbs(X), [1,2,3,6,1,2,2]).
X = [a, b, c] .
I can also "reverse" this by doing:
phrase(zorbs([a,b,c]), X).
X = [1, 2, 3, 6, 1, 2, 2].
Now, what I want to do is find a list of numbers with length less than 4 (for example) which these elements "parse" into, returning the rest.
So, for example, given [a,b,c], which would normally relate to [1, 2, 3, 6, 1, 2, 2], I want it to relate to [1, 2, 3] (which has length less than 4) and also give the remainder that couldn't be "reversed," so [c]. I don't really know where to start, as it seems there's no way to reason about the number of elements you've already consumed in a DCG.
Here's a sort-of solution:
X in 0..4,
indomain(X),
Q = [_|_],
prefix(Q, [a,b,c]),
length(A, X),
phrase(zorbs(Q), A).
but I think this is very inefficient, because I think it basically iterates up from nothing, and I want to find the solution with the biggest Q.
There is no direct way how to do this in this case. So your approach is essentially what can be done. That is, you are enumerating all possible solutions and (what you have not shown) selecting them accordingly.
Questions about the biggest and the like include some quantification that you cannot express directly in first order logic.
However, sometimes you can use a couple of tricks.
Sometimes, a partial list like [a,b,c|_] may be helpful.
?- Xs = [_,_,_,_|_], phrase(zorbs(Xs),[1,2,3,6,1,2,2]).
false.
So here we have proven that there is no list of length 4 or longer that corresponds to that sequence. That is, we have proven this for infinitely many lists!
And sometimes, using phrase/3 in place of phrase/2 may help. Say, you have a number sequence that doesn't parse, and you want to know how far it can parse:
?- Ys0 = [1,2,3,6,1,2,7], phrase(zorbs(Xs),Ys0,Ys).
Ys0 = [1,2,3,6,1,2,7], Xs = [], Ys = [1,2,3,6,1,2,7]
; Ys0 = [1,2,3,6,1,2,7], Xs = "a", Ys = [3,6,1,2,7]
; Ys0 = [1,2,3,6,1,2,7], Xs = "ab", Ys = [6,1,2,7]
; false.
(This is with the two DCG-rules exchanged)
Can use:
% Like "between", but counts down instead of up
count_down(High, Low, N) :-
integer(High),
integer(Low),
count_down_(High, Low, N).
count_down_(H, L, N) :-
compare(C, H, L),
count_down_comp_(C, H, L, N).
count_down_comp_('=', _H, L, N) :-
% All equal, final
N = L.
% Accept H as the counting-down value
count_down_comp_('>', H, _L, H).
count_down_comp_('>', H, L, N) :-
H0 is H - 1,
% Decrement H towards L, and loop
count_down_(H0, L, N).
... and then start with:
count_down(4, 1, Len), length(Lst, Len), phrase...
Another method is to use freeze to limit a list's length, element-by-element:
max_len_freeze(Lst, MaxLen) :-
compare(C, MaxLen, 0),
max_len_freeze_comp_(C, Lst, MaxLen).
max_len_freeze_comp_('=', [], 0).
max_len_freeze_comp_('>', [_|Lst], MaxLen) :-
succ(MaxLen0, MaxLen),
!,
freeze(Lst, max_len_freeze(Lst, MaxLen0)).
max_len_freeze_comp_('>', [], _).
... and then start with:
max_len_freeze(Lst, 4), phrase...
This will work to find the longest list (maximum length 4) first, since your DCG is greedy (i.e. matching [H|T] before []).
I am using Prolog to try and check if a list can be split into 2 sublists(subarrays) that have equal sums.
The following should succeed: [1,2,3,6], [2,1,1], [0], [1,1,2]
The following should fail: [1,4,8], [1,3,2], [2,2,1,1]
I believe my program is creating subsequences instead of sublists. This is causing queries similar to [1,3,2] and [2,2,1,1] to succeed when they should fail.
In the example of the query [1,3,2] it is returning true because the subsequences [1,2] and [3] have equal sums. That should not be allowed. Instead, [1,3,2] should be split into sublists [1]/[3,2] and [1,3]/[2]. Hence, it should fail.
I am unsure how to modify the subL predicate to return sublists instead of subsequences.
Here is what I have so far:
split([]).
split([0]).
split([H|T]) :-
subL([H|T], LEFT, RIGHT),
sum(LEFT, SUM1),
sum(RIGHT, SUM2),
SUM1=SUM2.
subL([],[],[]).
subL([H|T], [H|T2], X) :-
subL(T, T2, X).
subL([H|T], X, [H|T2]) :-
subL(T, X, T2).
sum([H|T], SUM1) :-
sum(T, SUM2),
SUM1 is SUM2 + H.
sum([H], SUM1) :-
H = SUM1.
Any help with this would be greatly appreciated. Thank you
YOu can make use of append to split the list into different lists. Indeed:
?- append(L, R, [1,2,3,6]).
L = [],
R = [1, 2, 3, 6] ;
L = [1],
R = [2, 3, 6] ;
L = [1, 2],
R = [3, 6] ;
L = [1, 2, 3],
R = [6] ;
L = [1, 2, 3, 6],
R = [] ;
false.
so you can write a predicate:
split(X) :-
append(L, R, X),
sum(L, S),
sum(R, S).
Here we thus check if both the left and the right sublist sum up to the same sum S. You however slighly need to change your sum/2 predicate such that the sum for an empty list is 0 as well. I leave that as an exercise.
The above is not very efficient, since it takes O(n2) time. You can make it linear by first calculating the sum of the entire list, and then make a predicate that iterates over the list, each time keeping track of the sum of the elements on the left side, and the remaining sum on the right side. I think that by first solving it the "naive" way, you likely will find it easier to implement that as an improvement.
Examples: ([1,2,3,7,6,9], 6). should print True, as 1+2+3=6.
([1,2,3,7,6,9], 5). should print False as there are no three numbers whose sum is 5.
([],N) where N is equal to anything should be false.
Need to use only these constructs:
A single clause must be defined (no more than one clause is allowed).
Only the following is permitted:
+, ,, ;, ., !, :-, is, Lists -- Head and Tail syntax for list types, Variables.
I have done a basic coding as per my understanding.
findVal([Q|X],A) :-
[W|X1]=X,
[Y|X2]=X,
% Trying to append the values.
append([Q],X1,X2),
% finding sum.
RES is Q+W+Y,
% verify here.
(not(RES=A)->
% finding the values.
(findVal(X2,A=)->
true
;
(findVal(X,A)->
% return result.
true
;
% return value.
false))
;
% return result.
true
).
It does not seem to run throwing the following error.
ERROR:
Undefined procedure: findVal/2 (DWIM could not correct goal)
Can someone help with this?
You can make use of append/3 [swi-doc] here to pick an element from a list, and get access to the rest of the elements (the elements after that element). By applying this technique three times, we thus obtain three items from the list. We can then match the sum of these elements:
sublist(L1, S) :-
append(_, [S1|L2], L1),
append(_, [S2|L3], L2),
append(_, [S3|_], L3),
S is S1 + S2 + S3.
Well, you can iterate (via backtracking) over all the sublists of 3 elements from the input list and see which ones sum 3:
sublist([], []).
sublist([H|T], [H|S]) :- sublist(T, S).
sublist([_|T], S) :- sublist(T, S).
:- length(L, 3), sublist([1,2,3,7,6,9], L), sum_list(L, 6).
I'm giving a partial solution here because it is an interesting problem even though the constraints are ridiculous.
First, I want something like select/3, except that will give me the tail of the list rather than the list without the item:
select_from(X, [X|R], R).
select_from(X, [_|T], R) :- select_from(X, T, R).
I want the tail, rather than just member/2, so I can recursively ask for items from the list without getting duplicates.
?- select_from(X, [1,2,3,4,5], R).
X = 1,
R = [2, 3, 4, 5] ;
X = 2,
R = [3, 4, 5] ;
X = 3,
R = [4, 5] ;
X = 4,
R = [5] ;
X = 5,
R = [] ;
false.
Yeah, this is good. Now I want to build a thing to give me N elements from a list. Again, I want combinations, because I don't want unnecessary duplicates if I can avoid it:
select_n_from(1, L, [X]) :- select_from(X, L, _).
select_n_from(N, L, [X|R]) :-
N > 1,
succ(N0, N),
select_from(X, L, Next),
select_n_from(N0, Next, R).
So the idea here is simple. If N = 1, then just do select_from/3 and give me a singleton list. If N > 1, then get one item using select_from/3 and then recur with N-1. This should give me all the possible combinations of items from this list, without giving me a bunch of repetitions I don't care about because addition is commutative and associative:
?- select_n_from(3, [1,2,3,4,5], R).
R = [1, 2, 3] ;
R = [1, 2, 4] ;
R = [1, 2, 5] ;
R = [1, 3, 4] ;
R = [1, 3, 5] ;
R = [1, 4, 5] ;
R = [2, 3, 4] ;
R = [2, 3, 5] ;
R = [2, 4, 5] ;
R = [3, 4, 5] ;
false.
We're basically one step away now from the result, which is this:
sublist(List, N) :-
select_n_from(3, List, R),
sumlist(R, N).
I'm hardcoding 3 here because of your problem, but I wanted a general solution. Using it:
?- sublist([1,2,3,4,5], N).
N = 6 ;
N = 7 ;
N = 8 ;
N = 8 ;
N = 9 ;
N = 10 ;
N = 9 ;
N = 10 ;
N = 11 ;
N = 12 ;
false.
You can also check:
?- sublist([1,2,3,4,5], 6).
true ;
false.
?- sublist([1,2,3,4,5], 5).
false.
?- sublist([1,2,3,4,5], 8).
true ;
true ;
false.
New users of Prolog will be annoyed that you get multiple answers here, but knowing that there are multiple ways to get 8 is probably interesting.
I'm creating a predicate enum that takes a list and a number for example [1,2,3,4] and 3 and returns a list that contains lists of length 3 made out of the list introduced. So in the example given enum([1,2,3,4],3,[[1,2,3],[2,3,4]]).
I've created a function take that takes only the first list of length N but I get errors when I try to loop it to get all of the others. Thanks you for helping.
append([],L,L).
append([H|T],L2,[H|L3]):- append(T,L2,L3).
len([],0).
len([_|B],X):- len(B,X1), X is X1+1.
take(_,X,Y) :- X =< 0, !, X =:= 0, Y = [].
take([],_,[]).
take([A|B],X,[A|C]):- Z is X-1, take(B,Z,C).
enum([],_,[]).
enum([N1|N2],N3,N4):-
len([N1|N2],U),
N3=<U,
take([N1|N2],N3,T1),
append([N4],[T1],T2),
!,
enum(N2,N3,T2).
I will focus on the take/3 predicate, which is the core of your question. In order to get a sublist like [2,3,4] of [1,2,3,4], you have to be able to skip the first element and just take a sublist of the rest.
You can achieve this by adding this clause to your definition:
take([_|Xs], N, Ys) :- take(Xs, N, Ys).
With this you now get several different sublists of length 3, but also some other superfluous solutions:
?- take([1,2,3,4], 3, Xs).
Xs = [1, 2, 3] ;
Xs = [1, 2, 4] ;
Xs = [1, 2] ;
Xs = [1, 3, 4] ;
Xs = [1, 3] ;
Xs = [1, 4] ;
Xs = [1] % etc.
This is because your clause take([], _, []) accepts an empty list as a "sublist of any length" of an empty list. I think you only wanted to accept the empty list as a sublist of length 0. If you remove this clause, your first clause will enforce that, and you only get solutions of length exactly 3:
?- take([1,2,3,4], 3, Xs).
Xs = [1, 2, 3] ;
Xs = [1, 2, 4] ;
Xs = [1, 3, 4] ;
Xs = [2, 3, 4] ;
false.
As a side note, your first clause is fine as is, but it can be simplified a bit to:
take(_,X,Y) :- X = 0, !, Y = [].
I would also advise you to use more readable variable names. For numbers like list lengths, we often use N. For lists, it's customary to use names like Xs, Ys, etc., with X, Y, etc. for members of the corresponding list.
Finally, to find all solutions of a predicate, you need to use a system predicate like setof, bagof, or findall. There is no way to write your enum in pure Prolog.
Because I am not sure about the advice in the other answer, here is my take on your problem.
First, don't define your own append/3 and length/2, append/3 is by now Prolog folklore, you can find it in textbooks 30 years old. And length/2 is really difficult to get right on your own, use the built-in.
Now: to take the first N elements at the front of a list L, you can say:
length(Front, N),
append(Front, _, L)
You create a list of the length you need, then use append/3 to split off this the front from the list you have.
With this in mind, it would be enough to define a predicate sliding_window/3:
sliding_window(L, N, [L]) :-
length(L, N).
sliding_window(L, N, [W|Ws]) :-
W = [_|_], % W should be at least one long
length(W, N),
append(W, _, L),
L = [_|L0],
sliding_window(L0, N, Ws).
This kind of works, but it will loop after giving you all useful answers:
?- sliding_window([a,b], N, Ws).
N = 2,
Ws = [[a, b]] ;
N = 1,
Ws = [[a], [b]] ;
% loops
It loops because of the same little snippet:
length(Front, N),
append(Front, _, L)
With length/2, you keep on generating lists of increasing length; once Front is longer than L, the append/3 fails, length/2 makes an even longer list, and so on forever.
One way out of this would be to use between/3 to constrain the length of the front. If you put it in its own predicate:
front_n(L, N, F) :-
length(L, Max),
between(1, Max, N),
length(F, N),
append(F, _, L).
With this:
sliding_window(L, N, [L]) :-
length(L, N).
sliding_window(L, N, [W|Ws]) :-
front_n(L, N, W),
L = [_|L0],
sliding_window(L0, N, Ws).
And now it finally works:
?- sliding_window([a,b,c,d], 3, Ws).
Ws = [[a, b, c], [b, c, d]] ;
false.
?- sliding_window([a,b,c], N, Ws).
N = 3,
Ws = [[a, b, c]] ;
N = 1,
Ws = [[a], [b], [c]] ;
N = 2,
Ws = [[a, b], [b, c]] ;
false.
Exercise: get rid of the harmless, but unnecessary choice point.