Prolog : Iterating over a list and creating a predicate - prolog

I'm creating a predicate enum that takes a list and a number for example [1,2,3,4] and 3 and returns a list that contains lists of length 3 made out of the list introduced. So in the example given enum([1,2,3,4],3,[[1,2,3],[2,3,4]]).
I've created a function take that takes only the first list of length N but I get errors when I try to loop it to get all of the others. Thanks you for helping.
append([],L,L).
append([H|T],L2,[H|L3]):- append(T,L2,L3).
len([],0).
len([_|B],X):- len(B,X1), X is X1+1.
take(_,X,Y) :- X =< 0, !, X =:= 0, Y = [].
take([],_,[]).
take([A|B],X,[A|C]):- Z is X-1, take(B,Z,C).
enum([],_,[]).
enum([N1|N2],N3,N4):-
len([N1|N2],U),
N3=<U,
take([N1|N2],N3,T1),
append([N4],[T1],T2),
!,
enum(N2,N3,T2).

I will focus on the take/3 predicate, which is the core of your question. In order to get a sublist like [2,3,4] of [1,2,3,4], you have to be able to skip the first element and just take a sublist of the rest.
You can achieve this by adding this clause to your definition:
take([_|Xs], N, Ys) :- take(Xs, N, Ys).
With this you now get several different sublists of length 3, but also some other superfluous solutions:
?- take([1,2,3,4], 3, Xs).
Xs = [1, 2, 3] ;
Xs = [1, 2, 4] ;
Xs = [1, 2] ;
Xs = [1, 3, 4] ;
Xs = [1, 3] ;
Xs = [1, 4] ;
Xs = [1] % etc.
This is because your clause take([], _, []) accepts an empty list as a "sublist of any length" of an empty list. I think you only wanted to accept the empty list as a sublist of length 0. If you remove this clause, your first clause will enforce that, and you only get solutions of length exactly 3:
?- take([1,2,3,4], 3, Xs).
Xs = [1, 2, 3] ;
Xs = [1, 2, 4] ;
Xs = [1, 3, 4] ;
Xs = [2, 3, 4] ;
false.
As a side note, your first clause is fine as is, but it can be simplified a bit to:
take(_,X,Y) :- X = 0, !, Y = [].
I would also advise you to use more readable variable names. For numbers like list lengths, we often use N. For lists, it's customary to use names like Xs, Ys, etc., with X, Y, etc. for members of the corresponding list.
Finally, to find all solutions of a predicate, you need to use a system predicate like setof, bagof, or findall. There is no way to write your enum in pure Prolog.

Because I am not sure about the advice in the other answer, here is my take on your problem.
First, don't define your own append/3 and length/2, append/3 is by now Prolog folklore, you can find it in textbooks 30 years old. And length/2 is really difficult to get right on your own, use the built-in.
Now: to take the first N elements at the front of a list L, you can say:
length(Front, N),
append(Front, _, L)
You create a list of the length you need, then use append/3 to split off this the front from the list you have.
With this in mind, it would be enough to define a predicate sliding_window/3:
sliding_window(L, N, [L]) :-
length(L, N).
sliding_window(L, N, [W|Ws]) :-
W = [_|_], % W should be at least one long
length(W, N),
append(W, _, L),
L = [_|L0],
sliding_window(L0, N, Ws).
This kind of works, but it will loop after giving you all useful answers:
?- sliding_window([a,b], N, Ws).
N = 2,
Ws = [[a, b]] ;
N = 1,
Ws = [[a], [b]] ;
% loops
It loops because of the same little snippet:
length(Front, N),
append(Front, _, L)
With length/2, you keep on generating lists of increasing length; once Front is longer than L, the append/3 fails, length/2 makes an even longer list, and so on forever.
One way out of this would be to use between/3 to constrain the length of the front. If you put it in its own predicate:
front_n(L, N, F) :-
length(L, Max),
between(1, Max, N),
length(F, N),
append(F, _, L).
With this:
sliding_window(L, N, [L]) :-
length(L, N).
sliding_window(L, N, [W|Ws]) :-
front_n(L, N, W),
L = [_|L0],
sliding_window(L0, N, Ws).
And now it finally works:
?- sliding_window([a,b,c,d], 3, Ws).
Ws = [[a, b, c], [b, c, d]] ;
false.
?- sliding_window([a,b,c], N, Ws).
N = 3,
Ws = [[a, b, c]] ;
N = 1,
Ws = [[a], [b], [c]] ;
N = 2,
Ws = [[a, b], [b, c]] ;
false.
Exercise: get rid of the harmless, but unnecessary choice point.

Related

How to check how many elements you've already consumed in Prolog DCGs

Say I have these DCGs:
zorbs([H|T]) --> zorb(H), zorbs(T).
zorbs([]) --> [].
zorb(a) --> [1,2].
zorb(b) --> [3].
zorb(c) --> [6,1,2,2].
I can do this:
?- phrase(zorbs(X), [1,2,3,6,1,2,2]).
X = [a, b, c] .
I can also "reverse" this by doing:
phrase(zorbs([a,b,c]), X).
X = [1, 2, 3, 6, 1, 2, 2].
Now, what I want to do is find a list of numbers with length less than 4 (for example) which these elements "parse" into, returning the rest.
So, for example, given [a,b,c], which would normally relate to [1, 2, 3, 6, 1, 2, 2], I want it to relate to [1, 2, 3] (which has length less than 4) and also give the remainder that couldn't be "reversed," so [c]. I don't really know where to start, as it seems there's no way to reason about the number of elements you've already consumed in a DCG.
Here's a sort-of solution:
X in 0..4,
indomain(X),
Q = [_|_],
prefix(Q, [a,b,c]),
length(A, X),
phrase(zorbs(Q), A).
but I think this is very inefficient, because I think it basically iterates up from nothing, and I want to find the solution with the biggest Q.
There is no direct way how to do this in this case. So your approach is essentially what can be done. That is, you are enumerating all possible solutions and (what you have not shown) selecting them accordingly.
Questions about the biggest and the like include some quantification that you cannot express directly in first order logic.
However, sometimes you can use a couple of tricks.
Sometimes, a partial list like [a,b,c|_] may be helpful.
?- Xs = [_,_,_,_|_], phrase(zorbs(Xs),[1,2,3,6,1,2,2]).
false.
So here we have proven that there is no list of length 4 or longer that corresponds to that sequence. That is, we have proven this for infinitely many lists!
And sometimes, using phrase/3 in place of phrase/2 may help. Say, you have a number sequence that doesn't parse, and you want to know how far it can parse:
?- Ys0 = [1,2,3,6,1,2,7], phrase(zorbs(Xs),Ys0,Ys).
Ys0 = [1,2,3,6,1,2,7], Xs = [], Ys = [1,2,3,6,1,2,7]
; Ys0 = [1,2,3,6,1,2,7], Xs = "a", Ys = [3,6,1,2,7]
; Ys0 = [1,2,3,6,1,2,7], Xs = "ab", Ys = [6,1,2,7]
; false.
(This is with the two DCG-rules exchanged)
Can use:
% Like "between", but counts down instead of up
count_down(High, Low, N) :-
integer(High),
integer(Low),
count_down_(High, Low, N).
count_down_(H, L, N) :-
compare(C, H, L),
count_down_comp_(C, H, L, N).
count_down_comp_('=', _H, L, N) :-
% All equal, final
N = L.
% Accept H as the counting-down value
count_down_comp_('>', H, _L, H).
count_down_comp_('>', H, L, N) :-
H0 is H - 1,
% Decrement H towards L, and loop
count_down_(H0, L, N).
... and then start with:
count_down(4, 1, Len), length(Lst, Len), phrase...
Another method is to use freeze to limit a list's length, element-by-element:
max_len_freeze(Lst, MaxLen) :-
compare(C, MaxLen, 0),
max_len_freeze_comp_(C, Lst, MaxLen).
max_len_freeze_comp_('=', [], 0).
max_len_freeze_comp_('>', [_|Lst], MaxLen) :-
succ(MaxLen0, MaxLen),
!,
freeze(Lst, max_len_freeze(Lst, MaxLen0)).
max_len_freeze_comp_('>', [], _).
... and then start with:
max_len_freeze(Lst, 4), phrase...
This will work to find the longest list (maximum length 4) first, since your DCG is greedy (i.e. matching [H|T] before []).

output a binary tree in preorder as a list in prolog

I am trying to create a list as output for a binary tree in prolog here is my code so far.
preorder(node(R, empty, empty),[R]).
preorder(node(R,Lb,Rb),[R|Ys]) :- preorder(Lb, Ys).
preorder(node(R,Lb,Rb),[R|Ys]) :-preorder(Rb, Ys).
My thought being that you traverse the tree and add the R to the rest list Ys.
it doesnt work as intendet though
?- preorder(node(1,node(2,empty,empty),node(3,empty,empty)),Z).
Z = [1, 2] ;
Z = [1, 3] ;
false.
This is the query I try to run and what I get. Prolog gives me all possible ways to the leafs, but I want just one list with all values in preorder, so basically the 2 lists combined([1,2,3]).
You can use the following code:
preorder(T, L) :-
preorder(T, [], L).
preorder(empty, L, L).
preorder(node(R, Lb, Rb), L0, [R|L2]) :-
preorder(Rb, L0, L1),
preorder(Lb, L1, L2).
Examples:
?- preorder(node(1,node(2,empty,empty),node(3,empty,empty)), L).
L = [1, 2, 3].
?- preorder(empty, L).
L = [].
?- preorder(node(1, empty, empty), L).
L = [1].
?- preorder(node(1,node(2,node(3,empty,empty),node(4,empty,empty)),node(5,empty,empty)), L).
L = [1, 2, 3, 4, 5].

Calculate whether the sum of exactly three values in a list is equal to N

Examples: ([1,2,3,7,6,9], 6). should print True, as 1+2+3=6.
([1,2,3,7,6,9], 5). should print False as there are no three numbers whose sum is 5.
([],N) where N is equal to anything should be false.
Need to use only these constructs:
A single clause must be defined (no more than one clause is allowed).
Only the following is permitted:
+, ,, ;, ., !, :-, is, Lists -- Head and Tail syntax for list types, Variables.
I have done a basic coding as per my understanding.
findVal([Q|X],A) :-
[W|X1]=X,
[Y|X2]=X,
% Trying to append the values.
append([Q],X1,X2),
% finding sum.
RES is Q+W+Y,
% verify here.
(not(RES=A)->
% finding the values.
(findVal(X2,A=)->
true
;
(findVal(X,A)->
% return result.
true
;
% return value.
false))
;
% return result.
true
).
It does not seem to run throwing the following error.
ERROR:
Undefined procedure: findVal/2 (DWIM could not correct goal)
Can someone help with this?
You can make use of append/3 [swi-doc] here to pick an element from a list, and get access to the rest of the elements (the elements after that element). By applying this technique three times, we thus obtain three items from the list. We can then match the sum of these elements:
sublist(L1, S) :-
append(_, [S1|L2], L1),
append(_, [S2|L3], L2),
append(_, [S3|_], L3),
S is S1 + S2 + S3.
Well, you can iterate (via backtracking) over all the sublists of 3 elements from the input list and see which ones sum 3:
sublist([], []).
sublist([H|T], [H|S]) :- sublist(T, S).
sublist([_|T], S) :- sublist(T, S).
:- length(L, 3), sublist([1,2,3,7,6,9], L), sum_list(L, 6).
I'm giving a partial solution here because it is an interesting problem even though the constraints are ridiculous.
First, I want something like select/3, except that will give me the tail of the list rather than the list without the item:
select_from(X, [X|R], R).
select_from(X, [_|T], R) :- select_from(X, T, R).
I want the tail, rather than just member/2, so I can recursively ask for items from the list without getting duplicates.
?- select_from(X, [1,2,3,4,5], R).
X = 1,
R = [2, 3, 4, 5] ;
X = 2,
R = [3, 4, 5] ;
X = 3,
R = [4, 5] ;
X = 4,
R = [5] ;
X = 5,
R = [] ;
false.
Yeah, this is good. Now I want to build a thing to give me N elements from a list. Again, I want combinations, because I don't want unnecessary duplicates if I can avoid it:
select_n_from(1, L, [X]) :- select_from(X, L, _).
select_n_from(N, L, [X|R]) :-
N > 1,
succ(N0, N),
select_from(X, L, Next),
select_n_from(N0, Next, R).
So the idea here is simple. If N = 1, then just do select_from/3 and give me a singleton list. If N > 1, then get one item using select_from/3 and then recur with N-1. This should give me all the possible combinations of items from this list, without giving me a bunch of repetitions I don't care about because addition is commutative and associative:
?- select_n_from(3, [1,2,3,4,5], R).
R = [1, 2, 3] ;
R = [1, 2, 4] ;
R = [1, 2, 5] ;
R = [1, 3, 4] ;
R = [1, 3, 5] ;
R = [1, 4, 5] ;
R = [2, 3, 4] ;
R = [2, 3, 5] ;
R = [2, 4, 5] ;
R = [3, 4, 5] ;
false.
We're basically one step away now from the result, which is this:
sublist(List, N) :-
select_n_from(3, List, R),
sumlist(R, N).
I'm hardcoding 3 here because of your problem, but I wanted a general solution. Using it:
?- sublist([1,2,3,4,5], N).
N = 6 ;
N = 7 ;
N = 8 ;
N = 8 ;
N = 9 ;
N = 10 ;
N = 9 ;
N = 10 ;
N = 11 ;
N = 12 ;
false.
You can also check:
?- sublist([1,2,3,4,5], 6).
true ;
false.
?- sublist([1,2,3,4,5], 5).
false.
?- sublist([1,2,3,4,5], 8).
true ;
true ;
false.
New users of Prolog will be annoyed that you get multiple answers here, but knowing that there are multiple ways to get 8 is probably interesting.

Prolog does not end calculation?

This is rather a technical question I think, I am trying to write a program that will find me all sub-sets of size K of the integers 1,2,...,N.
In here I've asked about a sub-set function that I'm using. The fixed version is:
subs(0,[],X).
subs(N,[A|R1],[A|R2]):-
N>0,
N1 is N-1,
subs(N1,R1,R2).
subs(N,[A|R1],[B|R2]):-
N>0,
subs(N,[A|R1],R2).
Later I wrote two functions to help me find the last element in a set and the sub-set of all element except the last (because [A|Rest] means A is the first and Rest is from number 2 to last, but I'd like the opposite - having the last elements and all the elements from the first to the one before the last). The functions are:
lastOf(A,[A]).
lastOf(A,[B|R]):-
lastOf(A,R).
subLast([],[X]).
subLast([A|R1],[A|R2]):-
subLast(R1,R2).
Now I wrote a function that creates a list of the first N natural numbers:
setOf(0,[]).
setOf(N,Nums):-
lastOf(N,Nums),
N>0, N1 is N-1,
subLast(NeoNums,Nums),
setOf(N1, NeoNums).
To combine all the above I have:
choose(K,N,X):-
setOf(N,Y),
subs(K,X,Y).
Running it, for example on 2 and 4, I get:
?-choose(2,4,X).
X = [1, 2] ;
X = [1, 3] ;
X = [1, 4] ;
X = [2, 3] ;
X = [2, 4] ;
X = [3, 4] ;
abort
% Execution Aborted
14 ?- ERROR: Stream user_input:6:143 Syntax error: Unexpected end of clause
These are all the correct outputs, but the problem is that after every time I press enter for a (possible) next answer, I get the next one, apart from the last, in which I have to forcefully abort, as it seems like the programs gets stuck in an infinite loop of some sort.
Can anyone assist?
I'm using SWI-Prolog.
If you're using SWI-Prolog, you can also use clpfd! Here's a clpfd variant of choose/3:
:- use_module(library(clpfd)).
choose(K,N,Zs) :-
length(Zs,K),
Zs ins 1..N,
chain(Zs,#<),
labeling([],Zs).
That's it! And here's the query you gave in the question:
?- choose(2,4,Zs).
Zs = [1,2] ;
Zs = [1,3] ;
Zs = [1,4] ;
Zs = [2,3] ;
Zs = [2,4] ;
Zs = [3,4]. % the goal `choose(2,4,Zs)` terminates
The setOf is the problem here. More specifically - lastOf, which is generating an infinite number of possible lists ending with N. Anyway, setOf can be implemented much easier and in much more readable way (and which is terminating):
setOf(0, []).
setOf(N, [N|T]) :-
N > 0,
N1 is N-1,
setOf(N1, T).
This is if you don't care about the reverse order of the numbers. Otherwise by introducing a helper predicate:
setOf(N, X) :- range(1, N, X).
% range(LowerBound, UpperBound, ResultList)
range(L, L, [L]).
range(L, U, [L|T]) :-
L < U,
L1 is L + 1,
range(L1, U, T).

Getting the product of a list from left to right

How do you get the product of a list from left to right?
For example:
?- product([1,2,3,4], P).
P = [1, 2, 6, 24] .
I think one way is to overload the functor and use 3 arguments:
product([H|T], Lst) :- product(T, H, Lst).
I'm not sure where to go from here.
You can use library(lambda) found here : http://www.complang.tuwien.ac.at/ulrich/Prolog-inedit/lambda.pl
Quite unreadable :
:- use_module(library(lambda)).
:- use_module(library(clpfd)).
product(L, R) :-
foldl(\X^Y^Z^(Y = []
-> Z = [X, [X]]
; Y = [M, Lst],
T #= X * M,
append(Lst, [T], Lst1),
Z = [T, Lst1]),
L, [], [_, R]).
Thanks to #Mike_Hartl for his advice, the code is much simple :
product([], []).
product([H | T], R) :-
scanl(\X^Y^Z^( Z #= X * Y), T, H, R).
seems like a list copy, just multiplying by last element handled. Let's start from 1 for the leftmost element:
product(L, P) :-
product(L, 1, P).
product([X|Xs], A, [Y|Ys]) :-
Y is X * A,
product(Xs, Y, Ys).
product([], _, []).
if we use library(clpfd):
:- [library(clpfd)].
product([X|Xs], A, [Y|Ys]) :-
Y #= X * A,
product(Xs, Y, Ys).
product([], _, []).
it works (only for integers) 'backward'
?- product(L, [1,2,6,24]).
L = [1, 2, 3, 4].
Probably very dirty solution (I am new to Prolog):
product([ListHead|ListTail], Answer) :-
product_acc(ListTail, [ListHead], Answer).
product_acc([ListHead|ListTail], [AccHead|AccTail], Answer) :-
Product is ListHead * AccHead,
append([Product, AccHead], AccTail, TempList),
product_acc(ListTail, TempList, Answer).
product_acc([], ReversedList, Answer) :-
reverse(ReversedList, Answer).
So basically at the beginning we call another predicate which has
extra "variable" Acc which is accumulator list.
So we take out head (first number) from original list and put it in
to Accumulator list.
Then we always take head (first number) from original list and
multiply it with head (first number) from accumulator list.
Then we have to append our new number which we got by multiplying
with the head from accumulator and later with the tail
Then we call same predicate again until original list becomes empty
and at the end obviously we need to reverse it.
And it seems to work
?- product([1,2,3,4], L).
L = [1, 2, 6, 24].
?- product([5], L).
L = [5].
?- product([5,4,3], L).
L = [5, 20, 60].
Sorry if my explanation is not very clear. Feel free to comment.

Resources