how can I Uniquely identify a computer - uniqueidentifier

I would like to develop an application that can connect to server and uniquely identify clients then give them permissions to run a specific query on server's database.
How can I identify clients in a unique way. Is MAC address reliable enough? or should I use something like CPU id or something else?
clarification : I do not what to create a registration code for my app. As it's suppose to be a free application. I would want to detect each client by an id and decide which one could have the permissions to run a specific method on server or not.

The usual approach is to give each client a login (name + password). That way, it's easy to replace clients when they need upgrade or when they fail.
MAC address should be unique but there is no central registry which enforces this rule. There are also tools to change it, so it's only somewhat reliable.
CPU and HD IDs are harder to change but people will come complaining when their hard disk died or when they upgrade their system.
Many PCs have TPM modules which have their own IDs but they can be disabled and the IDs can be wiped. Also, there are privacy issues (people don't like it when software automatically tracks them).
Another problem with an automated ID approach is how to identify them on the server. When several clients connect for the first time in quick succession, you will have trouble to tell them apart.

This question appears to have already been asked and answered in detail (although, you may not like the answers, since they appear to add up to: it's problematic.) I agree with Xefan's comment that more details would help define your question. Here's a link to earlier discussion on this:
What is a good unique PC identifier?

Related

How to monitor an application (Smartcard) access

This is my first post so please bear with me, will i get use to the posting requirements.
I need help finding out when i insert a smartcard (on Windows 64bit machine), what it then access in the background. I have tried using process monitor, process explorer and TCP View. These didn't provide me with what i needed which is to be able to see ports, registry keys, background network access and so on.I need something that will allow me to activate it to observe what happens when i use a smartcard. The idea is that a smartcard is inserted and then it looks at certain registry keys and also checks via an connection various URL's, ports to ensure access is granted. The problem is the software we have installed hasn't put the registry keys where they should be so i can't change them, and these are what i really need to get at. I have also tried searching the registry keys for a value one would be logged under and i can't seem to find it that way either.
I use to have a piece of software years ago that provided it, was a listener of some sort, but i can't think of it for the life of me what it is called. If anyone can point me in the direction of what i need to be thinking off i would be so grateful!
If i need to be clearer please let me know, thanks!
Actually a smartcard accesses nothing on its own. I'm aware, that Windows might look up the ATR in the registry in order to provide a "friendly card name", but if absent no harm is done except not having the friendly card name.
Any actions like internet request are more likely to be associated with a software tool called Service Provider, which knows, what commands to send for this specific card in order to perform actions like:
User authentication
Signature computation
Significant knowledge concerning the specific card is required, so entering some registry entries is far from sufficient. If the card contains a certificate, some software may try to verify the certificate chain or ensure, that the key was not revoked, but this is also not initiated by the card.

getting started with Single Sign On / Windows Authentication

First off, The Problem:
We have a Web App with a Flash front-end that talks to our ASP.NET web service via SOAP which then deals with all of our server side code (C#).
Right now, we implement a simple user sign on in our application, storing the info in our MSSQL DB.
A client has requested what I understand to be Windows authentication through our application using the currently logged in user.
So, I have been tasked with investigating this. Nobody, including myself, has any experience in this area.
I have been reading up on some basic Active Directory information, and some simple tutorials. I understand how to get access to the directory using ADSI through code. What I'm really interested in seeing is how the entire thing should be architected. I don't want to throw together a hacky solution.
Does anyone know of a good tutorial for this kind of thing or have any advice on getting started? More importantly, does this even sound viable?
I know I haven't given much information, but feel free to ask and I will provide answers.
Thanks.
Edit:
Will, to give you an idea of the scope of this, the network will include every computer in a large hospital. So yes, this is huge. Clearly I need to start small. I would like to come up with something that will work at my office first. Maybe ~10 Windows computers on a single domain. One Domain Controller.
I am also open to any good books on the subject.
If you are going to tie into Active Directory you will want to take a look at the System.DirectoryServices namespace. The implementations can vary wildly depending on your system architecture, but this should give you a good starting point.
Enjoy!

Reliable way of generating unique hardware ID

Question: I have to come up with unique ID for each networked client, such that:
it (ID) should persist once client software is installed on target computer, and should continue to persist if software is re-installed on same computer and same OS installment,
it should not change if hardware configuration is modified in most ways (except changing the motherboard)
When hard drive with client software installed is cloned to another computer with identical hardware configuration (or, as similar as possible), client software should be aware of that change.
A little bit of explanation and some back-story:
This question is basically age old question that also touches the topic of software copy-protection, as some of the mechanisms used in that area are mentioned here. I should be clear at this point that I'm not looking for a copy-protection scheme. Please, read on. :)
I'm working on a client-server software that is supposed to work in a local network. One of the problems I have to solve is to identify each unique client in the network (not so much of a problem), so that I can apply certain attributes to every specific client, retain and enforce those attributes during the deployment lifetime of a specific client.
While I was looking for a solution, I was aware of the following:
Windows activation system uses some kind of heavy fingerprinting mechanism that is extremely sensitive to hardware modifications,
Disk imaging software copies along all Volume IDs (tied to each partition when formatted), and custom, uniquely generated IDs during installation process, during first run, or in any other way, that is strictly software in its nature, and stored in registry or on hard drive, so it's very easy to confuse two.
The obvious choice for this kind of problem would be to find out BIOS identifiers (not 100% sure if this is unique through identical motherboard models, though), as that's the only thing I can rely on that isn't duplicated, transferred by cloning, and that can't be changed (at least not by using some user-space program). Everything else fails as either being not reliable (MAC cloning, anyone?), or too demanding (in terms that it's too sensitive to configuration changes).
Sub-question that I'd like to ask is, am I doing it correctly, architecture-wise? Perhaps there is a better tool for the task that I have to accomplish...
Another approach I had in mind is something similar to a handshake mechanism, where a server maintains an internal lookup table of connected client IDs (which can be even completely software-based and non-unique at any given moment), and tells the client to come up with a different ID during handshake, if a duplicate ID is provided upon connection. That approach, unfortunately, doesn't play nicely with one of the requirements to tie attributes to specific client during lifetime.
It seems to me that you should construct the unique ID corresponding to your requirements. This ID can be constructed as a hash (like MD5, SHA1 or SHA512) from the information which is important for you (some information about software and hardware component).
You can make your solution more secure if you sign such hash with your private key and your software verify during the starting, that the key (signed hash value) is signed (only public key must be installed together with your software). One can expand such kind of solution with different online services, but corporate clients could find online services not so nice.
What you're looking for is the Windows WMI. You can get the motherboard ID (which is unique across the same type of motherboard) or many many other types of unique identifiers and come up with some clever seeded function to generate a UHID. Whoa did I just make up an acronym?
And if you're looking specifically for getting the Motherboard (BIOS) ID:
WMI class: Win32_BIOS
Namespace: \Root\Cimv2
Documentation: http://msdn.microsoft.com/en-us/library/aa394077(VS.85).aspx
Sample code: http://msdn.microsoft.com/en-us/library/aa390423%28VS.85%29.aspx
Edit: You didn't specify a language (and I assumed C++), but this can be done in Java (with a COM driver), and any .NET language, as well.
Many programs use the hostId in order to build a license code (like those based on FlexLM). Have a look at what Matlab does depending on the operative system:
http://www.mathworks.com/support/solutions/en/data/1-171PI/index.html
Also have a look at this question:
Getting a unique id from a unix-like system
Once I also saw some programs basing their licenses on the serial number of the hard drive, an maybe that is the less likely thing to change. Some would suggest to use the MAC of your ethernet card, but that can be reprogrammed.
MAC
DON'T RELY ON MAC! EVER. It is not permanent. The user can easily change it (under 30 seconds).
Volume ID
DON'T RELY ON Volume ID! EVER. It is not permanent. The user can easily change it. It also changes by simply formatting the drive.
WMI
WMI is a service. Can be easily disabled. Actually, I tried that and I find out that on many computers is disabled or broken (yes, quite often broken).
License server
Connection to a validation server may cause you also lots of troubles because:
* your customers may not always be connected to the Internet.
* your customers may connect with special settings (router/NAT/proxy/gateway) that they need to input into your program in order to let it connect to the validation server.
* they may be behind a firewall that will block all programs except a few (my case). In some cases the firewall may not be under their control (valid for MOST corporate users)!
* it is super easy to redirect your program to a local fake webserver that emulates your licensing server.
Hardware data
If you need strong protection you need to rely on hardware. Something that cannot be edited by the user. Something like CPU ID instruction available in the Intel/AMD CPUs and the serial number written into the drive's IDE interface.
The CPU ID and HDD ID are permanent. They will never change, not even after you format the computer and reinstall Windows.
It is doable. For example this library reads the hardware ID of a computer. There is a compiled demo and also sourcecode/DLL. Disclaimer: the link leads to a commercial product (19€/no royalties).

is it reasonable to protect drm'd content client side

Update: this question is specifically about protecting (encipher / obfuscate) the content client side vs. doing it before transmission from the server. What are the pros / cons on going in an approach like itune's one - in which the files aren't ciphered / obfuscated before transmission.
As I added in my note in the original question, there are contracts in place that we need to comply to (as its the case for most services that implement drm). We push for drm free, and most content providers deals are on it, but that doesn't free us of obligations already in place.
I recently read some information regarding how itunes / fairplay approaches drm, and didn't expect to see the server actually serves the files without any protection.
The quote in this answer seems to capture the spirit of the issue.
The goal should simply be to "keep
honest people honest". If we go
further than this, only two things
happen:
We fight a battle we cannot win. Those who want to cheat will succeed.
We hurt the honest users of our product by making it more difficult to use.
I don't see any impact on the honest users in here, files would be tied to the user - regardless if this happens client or server side. This does gives another chance to those in 1.
An extra bit of info: client environment is adobe air, multiple content types involved (music, video, flash apps, images).
So, is it reasonable to do like itune's fairplay and protect the media client side.
Note: I think unbreakable DRM is an unsolvable problem and as most looking for an answer to this, the need for it relates to it already being in a contract with content providers ... in the likes of reasonable best effort.
I think you might be missing something here. Users hate, hate, hate, HATE DRM. That's why no media company ever gets any traction when they try to use it.
The kicker here is that the contract says "reasonable best effort", and I haven't the faintest idea of what that will mean in a court of law.
What you want to do is make your client happy with the DRM you put on. I don't know what your client thinks DRM is, can do, costs in resources, or if your client is actually aware that DRM can be really annoying. You would have to answer that. You can try to educate the client, but that could be seen as trying to explain away substandard work.
If the client is not happy, the next fallback position is to get paid without litigation, and for that to happen, the contract has to be reasonably clear. Unfortunately, "reasonable best effort" isn't clear, so you might wind up in court. You may be able to renegotiate parts of the contract in the client's favor, or you may not.
If all else fails, you hope to win the court case.
I am not a lawyer, and this is not legal advice. I do see this as more of a question of expectations and possible legal interpretation than a technical question. I don't think we can help you here. You should consult with a lawyer who specializes in this sort of thing, and I don't even know what speciality to recommend. If you're in the US, call your local Bar Association and ask for a referral.
I don't see any impact on the honest users in here, files would be tied to the user - regardless if this happens client or server side. This does gives another chance to those in 1.
Files being tied to the user requires some method of verifying that there is a user. What happens when your verification server goes down (or is discontinued, as Wal-Mart did)?
There is no level of DRM that doesn't affect at least some "honest users".
Data can be copied
As long as client hardware, standalone, can not distinguish between a "good" and a "bad" copy, you will end up limiting all general copies, and copy mechanisms. Most DRM companies deal with this fact by a telling me how much this technology sets me free. Almost as if people would start to believe when they hear the same thing often enough...
Code can't be protected on the client. Protecting code on the server is a largely solved problem. Protecting code on the client isn't. All current approaches come with stingy restrictions.
Impact works in subtle ways. At the very least, you have the additional cost of implementing client-side-DRM (and all follow-up cost, including the horde of "DMCA"-shouting lawyer gorillas) It is hard to prove that you will offset this cost with the increased revenue.
It's not just about code and crypto. Once you implement client-side DRM, you unleash a chain of events in Marketing, Public Relations and Legal. A long as they don't stop to alienate users, you don't need to bother.
To answer the question "is it reasonable", you have to be clear when you use the word "protect" what you're trying to protect against...
For example, are you trying to:
authorized users from using their downloaded content via your app under certain circumstances (e.g. rental period expiry, copied to a different computer, etc)?
authorized users from using their downloaded content via any app under certain circumstances (e.g. rental period expiry, copied to a different computer, etc)?
unauthorized users from using content received from authorized users via your app?
unauthorized users from using content received from authorized users via any app?
known users from accessing unpurchased/unauthorized content from the media library on your server via your app?
known users from accessing unpurchased/unauthorized content from the media library on your server via any app?
unknown users from accessing the media library on your server via your app?
unknown users from accessing the media library on your server via any app?
etc...
"Any app" in the above can include things like:
other player programs designed to interoperate/cooperate with your site (e.g. for flickr)
programs designed to convert content to other formats, possibly non-DRM formats
hostile programs designed to
From the article you linked, you can start to see some of the possible limitations of applying the DRM client-side...
The third, originally used in PyMusique, a Linux client for the iTunes Store, pretends to be iTunes. It requested songs from Apple's servers and then downloaded the purchased songs without locking them, as iTunes would.
The fourth, used in FairKeys, also pretends to be iTunes; it requests a user's keys from Apple's servers and then uses these keys to unlock existing purchased songs.
Neither of these approaches required breaking the DRM being applied, or even hacking any of the products involved; they could be done simply by passively observing the protocols involved, and then imitating them.
So the question becomes: are you trying to protect against these kinds of attack?
If yes, then client-applied DRM is not reasonable.
If no (for example, you're only concerned about people using your app, like Apple/iTunes does), then it might be.
(repeat this process for every situation you can think of. If the adig nswer is always either "client-applied DRM will protect me" or "I'm not trying to protect against this situation", then using client-applied DRM is resonable.)
Note that for the last four of my examples, while DRM would protect against those situations as a side-effect, it's not the best place to enforce those restrictions. Those kinds of restrictions are best applied on the server in the login/authorization process.
If the server serves the content without protection, it's because the encryption is per-client.
That being said, wireshark will foil your best-laid plans.
Encryption alone is usually just as good as sending a boolean telling you if you're allowed to use the content, since the bypass is usually just changing the input/output to one encryption API call...
You want to use heavy binary obfuscation on the client side if you want the protection to literally hold for more than 5 minutes. Using decryption on the client side, make sure the data cannot be replayed and that the only way to bypass the system is to reverse engineer the entire binary protection scheme. Properly done, this will stop all the kids.
On another note, if this is a product to be run on an operating system, don't use processor specific or operating system specific anomalies such as the Windows PEB/TEB/syscalls and processor bugs, those will only make the program even less portable than DRM already is.
Oh and to answer the question title: No. It's a waste of time and money, and will make your product not work on my hardened Linux system.

How to implement a secure distributed social network?

I'm interested in how you would approach implementing a BitTorrent-like social network. It might have a central server, but it must be able to run in a peer-to-peer manner, without communication to it:
If a whole region's network is disconnected from the internet, it should be able to pass updates from users inside the region to each other
However, if some computer gets the posts from the central server, it should be able to pass them around.
There is some reasonable level of identification; some computers might be dissipating incomplete/incorrect posts or performing DOS attacks. It should be able to describe some information as coming from more trusted computers and some from less trusted.
It should be able to theoretically use any computer as a server, however, optimizing dynamically the network so that typically only fast computers with ample internet work as seeders.
The network should be able to scale to hundreds of millions of users; however, each particular person is interested in less than a thousand feeds.
It should include some Tor-like privacy features.
Purely theoretical question, though inspired by recent events :) I do hope somebody implements it.
Interesting question. With the use of already existing tor, p2p, darknet features and by using some public/private key infrastructure, you possibly could come up with some great things. It would be nice to see something like this in action. However I see a major problem. Not by some people using it for file sharing, BUT by flooding the network with useless information. I therefore would suggest using a twitter like approach where you can ban and subscribe to certain people and start with a very reduced set of functions at the beginning.
Incidentally we programmers could make a good start to accomplish that goal by NOT saving and analyzing to much information about the users and use safe ways for storing and accessing user related data!
Interesting, the rendezvous protocol does something similar to this (it grabs "buddies" in the local network)
Bittorrent is a mean of transfering static information, its not intended to have everyone become producers of new content. Also, bittorrent requires that the producer is a dedicated server until all of the clients are able to grab the information.
Diaspora claims to be such one thing.

Resources