How can I intercept this approximation error in my matlab script? - algorithm

I am trying to find the minimum of a function using this algorithm.
It's not an optimal algorithm, but I don't care at the moment.
Also, you don't have to know how the algorithm works in order to reply, but if you're curious, I talk about it at the end of this post. It's really not that difficult.
Incriminated Algorithm
function result = fmin(f,a,b,max_error)
if abs(b-a) < max_error
result = (a+b)/2;
else
r1 = a+(b-a)*rand(1,1); r2 = a+(b-a)*rand(1,1);
c = min([r1,r2]); d = max([r1,r2]);
fc = f(c); fd = f(d);
if fc <= fd
b = d;
else
a = c;
end
result = fmin(f,a,b,max_error);
end
Now, the problem is this algorithm returns a minimum that is far from the actual minimum (computed via the matlab predefined function fminbnd) for more than max_error, if I use it with values of max_error <= 1e-10. This situation, form a theoretical standpoint is not possible.
Being recursive, the algorithm would never return if the condition abs(b-a) < max_error is never satisfied.
So, I think there is some error arising form the approximation of the numbers. At first, I thought that r1 or r2 where not computed properly. At some point, the two numbers would go out of the [a,b] interval, thus invalidating the hypothesis on which the algorithm is working.
To prove this, I modified the algorithm above to include a check on the interval that's computed at every iteration:
Incriminated Algorithm 2 [Check on the extremes]
function result = fmin(f,a,b,max_error)
if abs(b-a) < max_error
result = (a+b)/2;
else
r1 = a+(b-a)*rand(1,1); r2 = a+(b-a)*rand(1,1);
c = min([r1,r2]); d=max([r1,r2]);
% check that c and d are actually inside [a,b]
if ((c < a)||(d > b))
disp('Max precision reached');
result = (a+b)/2;
return;
end
fc = f(c); fd = f(d);
if fc <= fd
b = d;
else
a = c;
end
result = fmin(f,a,b,max_error);
end
But I don't get any additional output from the console.
So, I am thinking there is some error in the computation of f(c) or f(d), but I don't know how to prove it.
Question
Finally, my questions are
Do we, at this point, can be sure that the error is committed in the computation of either one of f(c) or f(d)?
Can we prove it with some line of code? Or better, can we write the algorithm so that it returns when it is supposed to?
How the algorithm works (not strictly inherent to the question)
It's an iterative algorithm. Basically, the idea is to generate a sequence of intervals containing the solution, starting from an initial interval [a,b] in which a given function f is unimodal.
At every step, we randomly choose two number c and d so that a <= c <= d <= b. Now, if we find that f(c) > f(d) it means we are sure that we can discard the values the function assumes before c as valid candidates for a minimum, because of the unimodality. So we restrict the interval and repeat the procedure in the interval [c,b]. On the contrary, if it's f(c) < f(d), we can discard the values from d to b, so we repeat the procedure in the interval [a,d].
At every iteration, the interval gets shorter. When its length is minor than the specified max_error value, the algorithm returns the medium point of the last interval as an approximation of the minimum value.
EDIT
I see there is one person that wants to close this question because it is too broad.
Please sir, can you elaborate in the comments?

This subdivision method only works in the special case that your function is (quasi-)convex (one local minimum, monotonically falling on the left, raising on the right). In the case of several local minima it will often converge to one of them, but it is by no means guaranteed that the algorithm finds the global minimum. The reduction from a to c resp. from b to d can jump over several local minima.

Related

Proving that there are no overlapping sub-problems?

I just got the following interview question:
Given a list of float numbers, insert “+”, “-”, “*” or “/” between each consecutive pair of numbers to find the maximum value you can get. For simplicity, assume that all operators are of equal precedence order and evaluation happens from left to right.
Example:
(1, 12, 3) -> 1 + 12 * 3 = 39
If we built a recursive solution, we would find that we would get an O(4^N) solution. I tried to find overlapping sub-problems (to increase the efficiency of this algorithm) and wasn't able to find any overlapping problems. The interviewer then told me that there wasn't any overlapping subsolutions.
How can we detect when there are overlapping solutions and when there isn't? I spent a lot of time trying to "force" subsolutions to appear and eventually the Interviewer told me that there wasn't any.
My current solution looks as follows:
def maximumNumber(array, current_value=None):
if current_value is None:
current_value = array[0]
array = array[1:]
if len(array) == 0:
return current_value
return max(
maximumNumber(array[1:], current_value * array[0]),
maximumNumber(array[1:], current_value - array[0]),
maximumNumber(array[1:], current_value / array[0]),
maximumNumber(array[1:], current_value + array[0])
)
Looking for "overlapping subproblems" sounds like you're trying to do bottom up dynamic programming. Don't bother with that in an interview. Write the obvious recursive solution. Then memoize. That's the top down approach. It is a lot easier to get working.
You may get challenged on that. Here was my response the last time that I was asked about that.
There are two approaches to dynamic programming, top down and bottom up. The bottom up approach usually uses less memory but is harder to write. Therefore I do the top down recursive/memoize and only go for the bottom up approach if I need the last ounce of performance.
It is a perfectly true answer, and I got hired.
Now you may notice that tutorials about dynamic programming spend more time on bottom up. They often even skip the top down approach. They do that because bottom up is harder. You have to think differently. It does provide more efficient algorithms because you can throw away parts of that data structure that you know you won't use again.
Coming up with a working solution in an interview is hard enough already. Don't make it harder on yourself than you need to.
EDIT Here is the DP solution that the interviewer thought didn't exist.
def find_best (floats):
current_answers = {floats[0]: ()}
floats = floats[1:]
for f in floats:
next_answers = {}
for v, path in current_answers.iteritems():
next_answers[v + f] = (path, '+')
next_answers[v * f] = (path, '*')
next_answers[v - f] = (path, '-')
if 0 != f:
next_answers[v / f] = (path, '/')
current_answers = next_answers
best_val = max(current_answers.keys())
return (best_val, current_answers[best_val])
Generally the overlapping sub problem approach is something where the problem is broken down into smaller sub problems, the solutions to which when combined solve the big problem. When these sub problems exhibit an optimal sub structure DP is a good way to solve it.
The decision about what you do with a new number that you encounter has little do with the numbers you have already processed. Other than accounting for signs of course.
So I would say this is a over lapping sub problem solution but not a dynamic programming problem. You could use dive and conquer or evenmore straightforward recursive methods.
Initially let's forget about negative floats.
process each new float according to the following rules
If the new float is less than 1, insert a / before it
If the new float is more than 1 insert a * before it
If it is 1 then insert a +.
If you see a zero just don't divide or multiply
This would solve it for all positive floats.
Now let's handle the case of negative numbers thrown into the mix.
Scan the input once to figure out how many negative numbers you have.
Isolate all the negative numbers in a list, convert all the numbers whose absolute value is less than 1 to the multiplicative inverse. Then sort them by magnitude. If you have an even number of elements we are all good. If you have an odd number of elements store the head of this list in a special var , say k, and associate a processed flag with it and set the flag to False.
Proceed as before with some updated rules
If you see a negative number less than 0 but more than -1, insert a / divide before it
If you see a negative number less than -1, insert a * before it
If you see the special var and the processed flag is False, insert a - before it. Set processed to True.
There is one more optimization you can perform which is removing paris of negative ones as candidates for blanket subtraction from our initial negative numbers list, but this is just an edge case and I'm pretty sure you interviewer won't care
Now the sum is only a function of the number you are adding and not the sum you are adding to :)
Computing max/min results for each operation from previous step. Not sure about overall correctness.
Time complexity O(n), space complexity O(n)
const max_value = (nums) => {
const ops = [(a, b) => a+b, (a, b) => a-b, (a, b) => a*b, (a, b) => a/b]
const dp = Array.from({length: nums.length}, _ => [])
dp[0] = Array.from({length: ops.length}, _ => [nums[0],nums[0]])
for (let i = 1; i < nums.length; i++) {
for (let j = 0; j < ops.length; j++) {
let mx = -Infinity
let mn = Infinity
for (let k = 0; k < ops.length; k++) {
if (nums[i] === 0 && k === 3) {
// If current number is zero, removing division
ops.splice(3, 1)
dp.splice(3, 1)
continue
}
const opMax = ops[j](dp[i-1][k][0], nums[i])
const opMin = ops[j](dp[i-1][k][1], nums[i])
mx = Math.max(opMax, opMin, mx)
mn = Math.min(opMax, opMin, mn)
}
dp[i].push([mx,mn])
}
}
return Math.max(...dp[nums.length-1].map(v => Math.max(...v)))
}
// Tests
console.log(max_value([1, 12, 3]))
console.log(max_value([1, 0, 3]))
console.log(max_value([17,-34,2,-1,3,-4,5,6,7,1,2,3,-5,-7]))
console.log(max_value([59, 60, -0.000001]))
console.log(max_value([0, 1, -0.0001, -1.00000001]))

Check whether A and B exists for the given values AorB and APlusB

Problem Statement:
You are given two non-negative integers: the longs pairOr and pairSum.
Determine whether it is possible that for two non-negative integers A and B we have both:
A or B = pairOr
A + B = pairSum
Above, "or" denotes the bitwise-or operator.
Return True if we can find such A and B, and False if not.
My Algorithm goes like this:
I've taken the equation: A | B = X and A + B =Y,
Now after substituting A's value from 2nd Equation, (Y-B) | B= X.
I'm going to traverse from 0 till Y (in place of B) to check if the above equation is true.
Code Snippet:
boolean isPossible(long orAandB,long plusAandB) {
for(long i=0;i<=plusAandB;i++) {
if(((plusAandB-i)|i)==orAandB ){
return true;
}
}
return false;
It will give TLE if the value of plusAndB is of number 10^18. Could you please help me optimize?
You don't need the full iteration, giving O(N). There's a way to do it in O(logN).
But completely solving the problem for you takes away most of the fun... ;-), so here's the main clue:
Your equation (Y-B) | B= X is one great observation, and the second is to have a look at this equation bit by bit, starting from the right (so you don't have to worry about borrow-bits in the first place). Which last-bit combinations of Y, X, and B can make your equation true? And if you found a B bit, how do you continue recursively with the higher bits (don't forget that subtraction may need a borrow)? I hope you remember the rules for subtracting binary numbers.
And keeping in mind that the problem only asks for true or false, not for any specific A or B value, can save you exponential complexity.

Implementing the square root method through successive approximation

Determining the square root through successive approximation is implemented using the following algorithm:
Begin by guessing that the square root is x / 2. Call that guess g.
The actual square root must lie between g and x/g. At each step in the successive approximation, generate a new guess by averaging g and x/g.
Repeat step 2 until the values of g and x/g are as close together as the precision of the hardware allows. In Java, the best way to check for this condition is to test whether the average is equal to either of the values used to generate it.
What really confuses me is the last statement of step 3. I interpreted it as follows:
private double sqrt(double x) {
double g = x / 2;
while(true) {
double average = (g + x/g) / 2;
if(average == g || average == x/g) break;
g = average;
}
return g;
}
This seems to just cause an infinite loop. I am following the algorithm exactly, if the average equals either g or x/g (the two values used to generate it) then we have our answer ?
Why would anyone ever use that approach, when they could simply use the formulas for (2n^2) = 4n^2 and (n + 1)^2 = n^2 + 2n + 1, to populate each bit in the mantissa, and divide the exponent by two, multiplying the mantissa by two iff the the mod of the exponent with two equals 1?
To check if g and x/g are as close as the HW allow, look at the relative difference and compare
it with the epsilon for your floating point format. If it is within a small integer multiple of epsilon, you are OK.
Relative difference of x and y, see https://en.wikipedia.org/wiki/Relative_change_and_difference
The epsilon for 32-bit IEEE floats is about 1.0e-7, as in one of the other answers here, but that answer used the absolute rather than the relative difference.
In practice, that means something like:
Math.abs(g-x/g)/Math.max(Math.abs(g),Math.abs(x/g)) < 3.0e-7
Never compare floating point values for equality. The result is not reliable.
Use a epsilon like so:
if(Math.abs(average-g) < 1e-7 || Math.abs(average-x/g) < 1e-7)
You can change the epsilon value to be whatever you need. Probably best is something related to the original x.

Fast solution to Subset sum

Consider this way of solving the Subset sum problem:
def subset_summing_to_zero (activities):
subsets = {0: []}
for (activity, cost) in activities.iteritems():
old_subsets = subsets
subsets = {}
for (prev_sum, subset) in old_subsets.iteritems():
subsets[prev_sum] = subset
new_sum = prev_sum + cost
new_subset = subset + [activity]
if 0 == new_sum:
new_subset.sort()
return new_subset
else:
subsets[new_sum] = new_subset
return []
I have it from here:
http://news.ycombinator.com/item?id=2267392
There is also a comment which says that it is possible to make it "more efficient".
How?
Also, are there any other ways to solve the problem which are at least as fast as the one above?
Edit
I'm interested in any kind of idea which would lead to speed-up. I found:
https://en.wikipedia.org/wiki/Subset_sum_problem#cite_note-Pisinger09-2
which mentions a linear time algorithm. But I don't have the paper, perhaps you, dear people, know how it works? An implementation perhaps? Completely different approach perhaps?
Edit 2
There is now a follow-up:
Fast solution to Subset sum algorithm by Pisinger
I respect the alacrity with which you're trying to solve this problem! Unfortunately, you're trying to solve a problem that's NP-complete, meaning that any further improvement that breaks the polynomial time barrier will prove that P = NP.
The implementation you pulled from Hacker News appears to be consistent with the pseudo-polytime dynamic programming solution, where any additional improvements must, by definition, progress the state of current research into this problem and all of its algorithmic isoforms. In other words: while a constant speedup is possible, you're very unlikely to see an algorithmic improvement to this solution to the problem in the context of this thread.
However, you can use an approximate algorithm if you require a polytime solution with a tolerable degree of error. In pseudocode blatantly stolen from Wikipedia, this would be:
initialize a list S to contain one element 0.
for each i from 1 to N do
let T be a list consisting of xi + y, for all y in S
let U be the union of T and S
sort U
make S empty
let y be the smallest element of U
add y to S
for each element z of U in increasing order do
//trim the list by eliminating numbers close to one another
//and throw out elements greater than s
if y + cs/N < z ≤ s, set y = z and add z to S
if S contains a number between (1 − c)s and s, output yes, otherwise no
Python implementation, preserving the original terms as closely as possible:
from bisect import bisect
def ssum(X,c,s):
""" Simple impl. of the polytime approximate subset sum algorithm
Returns True if the subset exists within our given error; False otherwise
"""
S = [0]
N = len(X)
for xi in X:
T = [xi + y for y in S]
U = set().union(T,S)
U = sorted(U) # Coercion to list
S = []
y = U[0]
S.append(y)
for z in U:
if y + (c*s)/N < z and z <= s:
y = z
S.append(z)
if not c: # For zero error, check equivalence
return S[bisect(S,s)-1] == s
return bisect(S,(1-c)*s) != bisect(S,s)
... where X is your bag of terms, c is your precision (between 0 and 1), and s is the target sum.
For more details, see the Wikipedia article.
(Additional reference, further reading on CSTheory.SE)
While my previous answer describes the polytime approximate algorithm to this problem, a request was specifically made for an implementation of Pisinger's polytime dynamic programming solution when all xi in x are positive:
from bisect import bisect
def balsub(X,c):
""" Simple impl. of Pisinger's generalization of KP for subset sum problems
satisfying xi >= 0, for all xi in X. Returns the state array "st", which may
be used to determine if an optimal solution exists to this subproblem of SSP.
"""
if not X:
return False
X = sorted(X)
n = len(X)
b = bisect(X,c)
r = X[-1]
w_sum = sum(X[:b])
stm1 = {}
st = {}
for u in range(c-r+1,c+1):
stm1[u] = 0
for u in range(c+1,c+r+1):
stm1[u] = 1
stm1[w_sum] = b
for t in range(b,n+1):
for u in range(c-r+1,c+r+1):
st[u] = stm1[u]
for u in range(c-r+1,c+1):
u_tick = u + X[t-1]
st[u_tick] = max(st[u_tick],stm1[u])
for u in reversed(range(c+1,c+X[t-1]+1)):
for j in reversed(range(stm1[u],st[u])):
u_tick = u - X[j-1]
st[u_tick] = max(st[u_tick],j)
return st
Wow, that was headache-inducing. This needs proofreading, because, while it implements balsub, I can't define the right comparator to determine if the optimal solution to this subproblem of SSP exists.
I don't know much python, but there is an approach called meet in the middle.
Pseudocode:
Divide activities into two subarrays, A1 and A2
for both A1 and A2, calculate subsets hashes, H1 and H2, the way You do it in Your question.
for each (cost, a1) in H1
if(H2.contains(-cost))
return a1 + H2[-cost];
This will allow You to double the number of elements of activities You can handle in reasonable time.
I apologize for "discussing" the problem, but a "Subset Sum" problem where the x values are bounded is not the NP version of the problem. Dynamic programing solutions are known for bounded x value problems. That is done by representing the x values as the sum of unit lengths. The Dynamic programming solutions have a number of fundamental iterations that is linear with that total length of the x's. However, the Subset Sum is in NP when the precision of the numbers equals N. That is, the number or base 2 place values needed to state the x's is = N. For N = 40, the x's have to be in the billions. In the NP problem the unit length of the x's increases exponentially with N.That is why the dynamic programming solutions are not a polynomial time solution to the NP Subset Sum problem. That being the case, there are still practical instances of the Subset Sum problem where the x's are bounded and the dynamic programming solution is valid.
Here are three ways to make the code more efficient:
The code stores a list of activities for each partial sum. It is more efficient in terms of both memory and time to just store the most recent activity needed to make the sum, and work out the rest by backtracking once a solution is found.
For each activity the dictionary is repopulated with the old contents (subsets[prev_sum] = subset). It is faster to simply grow a single dictionary
Splitting the values in two and applying a meet in the middle approach.
Applying the first two optimisations results in the following code which is more than 5 times faster:
def subset_summing_to_zero2 (activities):
subsets = {0:-1}
for (activity, cost) in activities.iteritems():
for prev_sum in subsets.keys():
new_sum = prev_sum + cost
if 0 == new_sum:
new_subset = [activity]
while prev_sum:
activity = subsets[prev_sum]
new_subset.append(activity)
prev_sum -= activities[activity]
return sorted(new_subset)
if new_sum in subsets: continue
subsets[new_sum] = activity
return []
Also applying the third optimisation results in something like:
def subset_summing_to_zero3 (activities):
A=activities.items()
mid=len(A)//2
def make_subsets(A):
subsets = {0:-1}
for (activity, cost) in A:
for prev_sum in subsets.keys():
new_sum = prev_sum + cost
if new_sum and new_sum in subsets: continue
subsets[new_sum] = activity
return subsets
subsets = make_subsets(A[:mid])
subsets2 = make_subsets(A[mid:])
def follow_trail(new_subset,subsets,s):
while s:
activity = subsets[s]
new_subset.append(activity)
s -= activities[activity]
new_subset=[]
for s in subsets:
if -s in subsets2:
follow_trail(new_subset,subsets,s)
follow_trail(new_subset,subsets2,-s)
if len(new_subset):
break
return sorted(new_subset)
Define bound to be the largest absolute value of the elements.
The algorithmic benefit of the meet in the middle approach depends a lot on bound.
For a low bound (e.g. bound=1000 and n=300) the meet in the middle only gets a factor of about 2 improvement other the first improved method. This is because the dictionary called subsets is densely populated.
However, for a high bound (e.g. bound=100,000 and n=30) the meet in the middle takes 0.03 seconds compared to 2.5 seconds for the first improved method (and 18 seconds for the original code)
For high bounds, the meet in the middle will take about the square root of the number of operations of the normal method.
It may seem surprising that meet in the middle is only twice as fast for low bounds. The reason is that the number of operations in each iteration depends on the number of keys in the dictionary. After adding k activities we might expect there to be 2**k keys, but if bound is small then many of these keys will collide so we will only have O(bound.k) keys instead.
Thought I'd share my Scala solution for the discussed pseudo-polytime algorithm described in wikipedia. It's a slightly modified version: it figures out how many unique subsets there are. This is very much related to a HackerRank problem described at https://www.hackerrank.com/challenges/functional-programming-the-sums-of-powers. Coding style might not be excellent, I'm still learning Scala :) Maybe this is still helpful for someone.
object Solution extends App {
var input = "1000\n2"
System.setIn(new ByteArrayInputStream(input.getBytes()))
println(calculateNumberOfWays(readInt, readInt))
def calculateNumberOfWays(X: Int, N: Int) = {
val maxValue = Math.pow(X, 1.0/N).toInt
val listOfValues = (1 until maxValue + 1).toList
val listOfPowers = listOfValues.map(value => Math.pow(value, N).toInt)
val lists = (0 until maxValue).toList.foldLeft(List(List(0)): List[List[Int]]) ((newList, i) =>
newList :+ (newList.last union (newList.last.map(y => y + listOfPowers.apply(i)).filter(z => z <= X)))
)
lists.last.count(_ == X)
}
}

Algorithm for multidimensional optimization / root-finding / something

I have five values, A, B, C, D and E.
Given the constraint A + B + C + D + E = 1, and five functions F(A), F(B), F(C), F(D), F(E), I need to solve for A through E such that F(A) = F(B) = F(C) = F(D) = F(E).
What's the best algorithm/approach to use for this? I don't care if I have to write it myself, I would just like to know where to look.
EDIT: These are nonlinear functions. Beyond that, they can't be characterized. Some of them may eventually be interpolated from a table of data.
There is no general answer to this question. A solver finding the solution to any equation does not exist. As Lance Roberts already says, you have to know more about the functions. Just a few examples
If the functions are twice differentiable, and you can compute the first derivative, you might try a variant of Newton-Raphson
Have a look at the Lagrange Multiplier Method for implementing the constraint.
If the function F is continuous (which it probably is, if it is an interpolant), you could also try the Bisection Method, which is a lot like binary search.
Before you can solve the problem, you really need to know more about the function you're studying.
As others have already posted, we do need some more information on the functions. However, given that, we can still try to solve the following relaxation with a standard non-linear programming toolbox.
min k
st.
A + B + C + D + E = 1
F1(A) - k = 0
F2(B) - k = 0
F3(C) -k = 0
F4(D) - k = 0
F5(E) -k = 0
Now we can solve this in any manner we wish, such as penalty method
min k + mu*sum(Fi(x_i) - k)^2
st
A+B+C+D+E = 1
or a straightforward SQP or interior-point method.
More details and I can help advise as to a good method.
m
The functions are all monotonically increasing with their argument. Beyond that, they can't be characterized. The approach that worked turned out to be:
1) Start with A = B = C = D = E = 1/5
2) Compute F1(A) through F5(E), and recalculate A through E such that each function equals that sum divided by 5 (the average).
3) Rescale the new A through E so that they all sum to 1, and recompute F1 through F5.
4) Repeat until satisfied.
It converges surprisingly fast - just a few iterations. Of course, each iteration requires 5 root finds for step 2.
One solution of the equations
A + B + C + D + E = 1
F(A) = F(B) = F(C) = F(D) = F(E)
is to take A, B, C, D and E all equal to 1/5. Not sure though whether that is what you want ...
Added after John's comment (thanks!)
Assuming the second equation should read F1(A) = F2(B) = F3(C) = F4(D) = F5(E), I'd use the Newton-Raphson method (see Martijn's answer). You can eliminate one variable by setting E = 1 - A - B - C - D. At every step of the iteration you need to solve a 4x4 system. The biggest problem is probably where to start the iteration. One possibility is to start at a random point, do some iterations, and if you're not getting anywhere, pick another random point and start again.
Keep in mind that if you really don't know anything about the function then there need not be a solution.
ALGENCAN (part of TANGO) is really nice. There are Python bindings, too.
http://www.ime.usp.br/~egbirgin/tango/codes.php - " general nonlinear programming that does not use matrix manipulations at all and, so, is able to solve extremely large problems with moderate computer time. The general algorithm is of Augmented Lagrangian type ... "
http://pypi.python.org/pypi/TANGO%20Project%20-%20ALGENCAN/1.0
Google OPTIF9 or ALLUNC. We use these for general optimization.
You could use standard search technic as the others mentioned. There are a few optimization you could make use of it while doing the search.
First of all, you only need to solve A,B,C,D because 1-E = A+B+C+D.
Second, you have F(A) = F(B) = F(C) = F(D), then you can search for A. Once you get F(A), you could solve B, C, D if that is possible. If it is not possible to solve the functions, you need to continue search each variable, but now you have a limited range to search for because A+B+C+D <= 1.
If your search is discrete and finite, the above optimizations should work reasonable well.
I would try Particle Swarm Optimization first. It is very easy to implement and tweak. See the Wiki page for it.

Resources