Algorithm for multidimensional optimization / root-finding / something - algorithm

I have five values, A, B, C, D and E.
Given the constraint A + B + C + D + E = 1, and five functions F(A), F(B), F(C), F(D), F(E), I need to solve for A through E such that F(A) = F(B) = F(C) = F(D) = F(E).
What's the best algorithm/approach to use for this? I don't care if I have to write it myself, I would just like to know where to look.
EDIT: These are nonlinear functions. Beyond that, they can't be characterized. Some of them may eventually be interpolated from a table of data.

There is no general answer to this question. A solver finding the solution to any equation does not exist. As Lance Roberts already says, you have to know more about the functions. Just a few examples
If the functions are twice differentiable, and you can compute the first derivative, you might try a variant of Newton-Raphson
Have a look at the Lagrange Multiplier Method for implementing the constraint.
If the function F is continuous (which it probably is, if it is an interpolant), you could also try the Bisection Method, which is a lot like binary search.
Before you can solve the problem, you really need to know more about the function you're studying.

As others have already posted, we do need some more information on the functions. However, given that, we can still try to solve the following relaxation with a standard non-linear programming toolbox.
min k
st.
A + B + C + D + E = 1
F1(A) - k = 0
F2(B) - k = 0
F3(C) -k = 0
F4(D) - k = 0
F5(E) -k = 0
Now we can solve this in any manner we wish, such as penalty method
min k + mu*sum(Fi(x_i) - k)^2
st
A+B+C+D+E = 1
or a straightforward SQP or interior-point method.
More details and I can help advise as to a good method.
m

The functions are all monotonically increasing with their argument. Beyond that, they can't be characterized. The approach that worked turned out to be:
1) Start with A = B = C = D = E = 1/5
2) Compute F1(A) through F5(E), and recalculate A through E such that each function equals that sum divided by 5 (the average).
3) Rescale the new A through E so that they all sum to 1, and recompute F1 through F5.
4) Repeat until satisfied.
It converges surprisingly fast - just a few iterations. Of course, each iteration requires 5 root finds for step 2.

One solution of the equations
A + B + C + D + E = 1
F(A) = F(B) = F(C) = F(D) = F(E)
is to take A, B, C, D and E all equal to 1/5. Not sure though whether that is what you want ...
Added after John's comment (thanks!)
Assuming the second equation should read F1(A) = F2(B) = F3(C) = F4(D) = F5(E), I'd use the Newton-Raphson method (see Martijn's answer). You can eliminate one variable by setting E = 1 - A - B - C - D. At every step of the iteration you need to solve a 4x4 system. The biggest problem is probably where to start the iteration. One possibility is to start at a random point, do some iterations, and if you're not getting anywhere, pick another random point and start again.
Keep in mind that if you really don't know anything about the function then there need not be a solution.

ALGENCAN (part of TANGO) is really nice. There are Python bindings, too.
http://www.ime.usp.br/~egbirgin/tango/codes.php - " general nonlinear programming that does not use matrix manipulations at all and, so, is able to solve extremely large problems with moderate computer time. The general algorithm is of Augmented Lagrangian type ... "
http://pypi.python.org/pypi/TANGO%20Project%20-%20ALGENCAN/1.0

Google OPTIF9 or ALLUNC. We use these for general optimization.

You could use standard search technic as the others mentioned. There are a few optimization you could make use of it while doing the search.
First of all, you only need to solve A,B,C,D because 1-E = A+B+C+D.
Second, you have F(A) = F(B) = F(C) = F(D), then you can search for A. Once you get F(A), you could solve B, C, D if that is possible. If it is not possible to solve the functions, you need to continue search each variable, but now you have a limited range to search for because A+B+C+D <= 1.
If your search is discrete and finite, the above optimizations should work reasonable well.

I would try Particle Swarm Optimization first. It is very easy to implement and tweak. See the Wiki page for it.

Related

Is there a bug in Algorithm 4.3.1D of Knuth's TAOCP?

You can find the explanation of Algorithm 4.3.1D, as it appears in the book Art of The Computer Programming Vol. 2 (pages 272-273) by D. Knuth in the appendix of this question.
It appears that, in the step D.6, qhat is expected to be off by one at most.
Lets assume base is 2^32 (i.e we are working with unsigned 32 bit digits). Let u = [238157824, 2354839552, 2143027200, 0] and v = [3321757696, 2254962688]. Expected output of this division is 4081766756 Link
Both u and v is already normalized as described in D.1(v[1] > b / 2 and u is zero padded).
First iteration of the loop D.3 through D.7 is no-op because qhat = floor((0 * b + 2143027200) / (2254962688)) = 0 in the first iteration.
In the second iteration of the loop, qhat = floor((2143027200 * b + 2354839552) / (2254962688)) = 4081766758 Link.
We don't need to calculate steps D.4 and D.5 to see why this is a problem. Since qhat will be decreased by one in D.6, result of the algorithm will come out as 4081766758 - 1 = 4081766757, however, result should be 4081766756 Link.
Am I right to think that there is a bug in the algorithm, or is there a fallacy in my reasoning?
Appendix
There is no bug; you're ignoring the loop inside Step D3:
In your example, as a result of this test, the value of q̂, which was initially set to 4081766758, is decreased two times, first to 4081766757 and then to 4081766756, before proceeding to Step D4.
(Sorry I did not have the time to make a more detailed / “proper” answer.)

How to find least square fit for two combined functions

I have a curvefit problem
I have two functions
y = ax+b
y = ax^2+bx-2.3
I have one set of data each for the above functions
I need to find a and b using least square method combining both the functions
I was using fminsearch function to minimize the sum of squares of errors of these two functions.
I am unable to use this method in lsqcurvefit
Kindly help me
Regards
Ram
I think you'll need to worry less about which library routine to use and more about the math. Assuming you mean vertical offset least squares, then you'll want
D = sum_{i=1..m}(y_Li - a x_Li + b)^2 + sum_{i=j..n}(y_Pj - a x_Pj^2 - b x_Pj + 2.3)^2
where there are m points (x_Li, y_Li) on the line and n points (x_Pj, y_Pj) on the parabola. Now find partial derivatives of D with respect to a and b. Setting them to zero provides two linear equations in 2 unknowns, a and b. Solve this linear system.
y = ax+b
y = ax^2+bx-2.3
In order to not confuse y of the first equation with y of the second equation we use distinct notations :
u = ax+b
v = ax^2+bx+c
The method of linear regression combined for the two functions is shown on the joint page :
HINT : If you want to find by yourself the matrixial equation appearing above, follow the Gene's answer.

In a reduction with additive but nonlinear blow up can I still get APX-Hardness?

I'm not entirely sure how to phrase this so first I'll give an example and then, in analogy to the example, try and state my question.
A standard example of an L-reduction is showing bounded degree independent set (for concreteness say instantiated as G = (V,E), B $\ge$ 3 is the bound on degree) is APX complete by L - reduction to max 2 SAT. It works by creating a clause for each edge and a clause for each vertex, the idea being in our simulation by MAX 2 SAT every edge clause will be satisfied and it's optimum is:
OPT = |E| + |Maximum Ind. Set|
Since the degree is bounded, |Max Ind. Set| is \Theta(|E|) and we get an L-Reduction.
Now my question is suppose I have two problems A, which is APX-Complete, and B which is my target problem. Let the optimum of A be \Theta(m) and my solution in B
OPT_B = p(m) + OPT_A
where p is some polynomial with deg(p) > 1. I no longer have an L-reduction, my question is do get anything? Can it be a PTAS reduction? I hope the question is clear, thanks.

How is `(d*a)mod(b)=1` written in Ruby?

How should I write this:
(d*a)mod(b)=1
in order to make it work properly in Ruby? I tried it on Wolfram, but their solution:
(da(b, d))/(dd) = -a/d
doesn't help me. I know a and b. I need to solve (d*a)mod(b)=1 for d in the form d=....
It's not clear what you're asking, and, depending on what you mean, a solution may be impossible.
First off, (da(b, d))/(dd) = -a/d, is not a solution to that equation; rather, it's a misinterpretation of the notation used for partial derivatives. What Wolfram Alpha actually gave you was:
, which is entirely unrelated.
Secondly, if you're trying to solve (d*a)mod(b)=1 for d, you may be out of luck. For any value of a and b, where a and b have a common prime factor, there are an infinite number of values of d that satisfy the equation. If a and b are coprime, you can use the formula given in LutzL's answer.
Additionally, if you're looking to perform symbolic manipulation of equations, Ruby is likely not the proper tool. Consider using a CAS, like Python's SymPy or Wolfram Mathematica.
Finally, if you're just trying to compute (d*a)mod(b), the modulo operator in Ruby is %, so you'd write (d*a)%(b).
You are looking for the modular inverse of a modulo b.
For any two numbers a,b the extended euclidean algorithm
g,u,v = xgcd(a, b)
gives coefficients u,v such that
u*a+v*b = g
and g is the greatest common divisor. You need a,b co-prime, preferably by ensuring that b is a prime number, to get g=1 and then you can set d=u.
xgcd(a,b)
if b = 0
return (a,1,0)
q,r = a divmod b
// a = q*b + r
g,u,v = xgcd(b, r)
// g = u*b + v*r = u*b + v*(a-q*b) = v*a+(u-q*v)*b
return g,v,u - q*v

Dynamic programming assembly line scheduling

I am reading about Dynamic programming in Cormen etc book on algorithms. following is text from book
Suppose we have motor car factory with two assesmly lines called as line 1 and line 2. We have to determine fastest time to get chassis all the way.
Ultimate goal is to determine the fastest time to get a chassis all the way through the factory, which we denote by Fn. The chasssis has to get all the way through station "n" on either line 1 or line 2 and then to factory exit. Since the faster of these ways is the fastest way through the entire factory, we have
Fn = min(f1[n] + x1, f2[n]+x2) ---------------- Eq1
Above x1 and x2 final additional time for comming out from line 1 and line 2
I have following recurrence equations. Consider following are Eq2.
f1[j] = e1 + a1,1 if j = 1
min(f1[j-1] + a1,j, f2[j-1] + t2,j-1 + a1,j if j >= 2
f2[j] = e2 + a2,1 if j = 1
min(f2[j-1] + a2,j, f1[j-1] + t1,j-1 + a2,j if j >= 2
Let Ri(j) be the number of references made to fi[j] in a recursive algorithm.
From equation R1(n) = R2(n) = 1
From equation 2 above we have
R1(j) = R2(j) = R1(j+1) + R2(j+1) for j = 1, 2, ...n-1
My question is how author came with R(n) =1 because usally we have base case as 0 rather than n, here then how we will write recursive functions in code
for example C code?
Another question is how author came up with R1(j) and R2(j)?
Thanks for all the help.
If you solve the problem in a recursive way, what would you do?
You'd start calculating F(n). F(n) would recursively call f1(n-1) and f2(n-1) until getting to the leaves (f1(0), f2(0)), right?
So, that's the reason the number of references to F(n) in the recursive solution is 1, because you'd need to compute f1(n) and f2(n) only once. This is not true to f1(n-1), which is referenced when you compute f1(n) and when you compute f2(n).
Now, how did he come up with R1(j) = R2(j) = R1(j+1) + R2(j+1)?
well, computing it in a recursive way, every time you need f1(i), you have to compute f1(j), f2(j), for every j in the interval [0, i) -- AKA for every j smaller than i.
In other words, the value of f1,2(i) depends on the value of f1,2(0..i-1), so every time you compute a f_(i), you're computing EVERY f1,2(1..i-1) - (because it depends on their value).
For this reason, the number of times you compute f_(i) depends on how many f1,2 there are "above him".
Hope that's clear.

Resources