Does Boost.Spirit or Antlr support Left-recursive grammars - c++11

In my experience, forcing a grammar representation to not be left-recursive tends to be unintuitive or cumbersome in many cases.
I am surveying various parser generator frameworks and I am currently reading about Antlr and Boost.Spirit.
Do either of them support left-recursive grammars? In general, which one supports more powerful grammars?
Thanks!

I'll google that for you. Yep, ANTLR 4 supports directly left recursive rules. https://theantlrguy.atlassian.net/wiki/display/ANTLR4/Left-recursive+rules

Related

Implementation of Prolog extension handling temporal operators

I am looking for implementation of Prolog extension which handles temporal logic operators. Is there any info about this ?
As temporal logic has been a significant part of logic, I am sure that there must have been discussions about this with respect to prototype or implementation.
I suggest to take a look at Etalis. If it turns out to be overkill (I'm sorry I never really delved inside too much), and you're using SWI-Prolog, see if pack Julian could be a better fit. It's nicely integrated with CLP(FD) library and will leave you full freedom about the semantics of your operators. Of course, it's a 'lower level' approach...
I would start with Carlo's suggestions. But if you're looking only for basic temporal logic operators, the Logtalk library includes an implementation for basic temporal interval relations:
https://logtalk.org/docs/interval_0.html
You can use Logtalk as an extension to most Prolog implementations.

Is there a framework for writing phrase structure rules out there that is opensource?

I've worked with the Xerox toolchain so far, which is powerful, not opensource, and a bit overkill for my current problem. Are there libraries that allow my to implement a phrase structure grammar? Preferably in ruby or lisp.
AFAIK, there's no open-source Lisp phrase structure parser available.
But since a parser is actually a black box, it's not so hard to make your application work with a parser written in any language, especially as they produce S-expressions as output. For example, with something like pfp you can just pipe your sentences as strings to it, then read and process the resulting trees. Or you can wrap a socket server around it and you'll get a distributed system :)
There's also cl-langutils, that may be helpful in some basic NLP tasks, like tokenization and, maybe, POS tagging. But overall, it's much less mature and feature rich, than the commonly used packages, like Stanford's or OpenNLP.

What is the difference between Regex syntax in Ruby vs Perl?

In my understanding, when Matz invented Ruby, he pretty much lifted a lot of Perl language constructs and duplicated them. Does this extend to regular expressions as well, or are there any syntactical differences that I should be aware of?
There's an extensive comparison of regex support in many languages at https://www.regular-expressions.info/refbasic.html and its sibling pages. Enter the two languages that you want to compare w.r.t. support of regex capabilities, and see the differences in the table.

What is more interesting or powerful: Curry, Mercury or Lambda-Prolog?

I would like to ask you about what formal system could be more interesting to implement from scratch/reverse engineer.
I've looked through some existing and open-source projects of logical/declarative programming systems. I've decided to make up something similar in my free time, or at least to catch the general idea of implementation.
It would be great if some of these systems would provide most of the expressive power and conciseness of modern academic investigations in logic and its relation with computational models.
What would you recommend to study at least at the conceptual level? For example, Lambda-Prolog is interesting particularly because it allows for higher order relations, but AFAIK is based on intuitionist logic and therefore lack the excluded-middle principle; that's generally a disadvantage for me.
I would also welcome any suggestions about modern logical programming systems which are less popular but more expressive/powerful.
Prolog was the first language which changed my point of view at programming. But later I found it to be not so high-level as I'd like to see it.
Curry - I've tried only Munster CC, and found it somewhat inconvenient. Actually, at this point, I decided to stop ignoring Haskell.
Mercury has many things which I wanted to see in Prolog. I have a really good expectation about the possibility to distinguish modes of rules. Programs written in Mercury should inspire compiler to do a lot of optimizations (I guess).
Twelf.
It generalizes lambda-prolog significantly, and it's a logical framework and a metalogical framework as well as a logic programming language. If you need a language with a heavy focus on logic as well as computation, it's the best I know of.
If I were to try to extend a logic based system, I'd choose Prolog Cafe as it is small, open sourced, standards compliant, and can be easily integrated into java based systems.
For the final project in a programming languages course I took, we had to embed a Prolog evaluator in Scheme using continuations and macros. The end result was that you could freely mix Scheme and Prolog code, and even pass arbitrary predicates written in Scheme to the Prolog engine.
It was a very instructive exercise. The first 12 lines of code (and and or) literally took about 6 hours to write and get correct. It was pretty much the search logic, written very concisely using continuations. The rest followed a bit more easily. Then once I added the unification algorithm, it all just worked.

How to write a linter? [closed]

Closed. This question is off-topic. It is not currently accepting answers.
Want to improve this question? Update the question so it's on-topic for Stack Overflow.
Closed 10 years ago.
Improve this question
In my day job I, and others on my team write a lot of hardware models in Verilog-AMS, a language supported primarily by commercial vendors and a few opensource simulator projects.
One thing that would make supporting each others code more helpful would be a LINTER that would check our code for common problems and assist with enforcing a shared code formatting style.
I of course want to be able to add my own rules and, after I prove their utility to myself, promote them to the rest of the team..
I don't mind doing the work that has to be done, but of course also want to leverage the work of other existing projects.
Does having the allowed language syntax in a yacc or bison format give me a leg up?
or should I just suck each language statement into a perl string, and use pattern matching to find the things I don't like?
(most syntax and compilation errors are easily caught by the commercial tools.. but we have some of our own extentions.)
lex/flex and yacc/bison provide easy-to-use, well-understood lexer- and parser-generators, and I'd really recommend doing something like that as opposed to doing it procedurally in e.g. Perl. Regular expressions are powerful stuff for ripping apart strings with relatively-, but not totally-fixed structure. With any real programming language, the size of your state machine gets to be simply unmanageable with anything short of a Real Lexer/Parser (tm). Imagine dealing with all possible interleavings of keywords, identifiers, operators, extraneous parentheses, extraneous semicolons, and comments that are allowed in something like Verilog AMS, with regular expressions and procedural code alone.
There's no denying that there's a substantial learning curve there, but writing a grammar that you can use for flex and bison, and doing something useful on the syntax tree that comes out of bison, will be a much better use of your time than writing a ton of special-case string-processing code that's more naturally dealt with using a syntax-tree in the first place. Also, what you learn writing it this way will truly broaden your skillset in ways that writing a bunch of hacky Perl code just won't, so if you have the means, I highly recommend it ;-)
Also, if you're lazy, check out the Eclipse plugins that do syntax highlighting and basic refactoring for Verilog and VHDL. They're in an incredibly primitive state, last I checked, but they may have some of the code you're looking for, or at least a baseline piece of code to look at to better inform your approach in rolling your own.
I've written a couple verilog parsers and I would suggest PCCTS/ANTLR if your favorite programming language is C/C++/Java. There is a PCCTS/ANTLR Verilog grammar that you can start with. My favorite parser generator is Zebu which is based on Common Lisp.
Of course the big job is to specify all the linting rules. It makes sense to make some kind of language to specify the linting rules as well.
Don't underestimate the amount of work that goes into a linter. Parsing is the easy part because you have tools (bison, flex, ANTLR/PCCTS) to automate much of it.
But once you have a parse, then what? You must build a semantic tree for the design. Depending on how complicated your inputs are, you must elaborate the Verilog-AMS design (i.e. resolving parameters, unrolling generates, etc. If you use those features). And only then can you try to implement rules.
I'd seriously consider other possible solutions before writing a linter, unless the number of users and potential time savings thereby justify the development time.
In trying to find my answer, I found this on ANTLR - might be of use
If you use Java at all (and thus IDEA), the IDE's extensions for custom languages might be of use
yacc/bison definitely gives you a leg up, since good linting would require parsing the program. Regex (true regex, at least) might cover trivial cases, but it is easy to write code that the regexes don't match but are still bad style.
ANTLR looks to be an alternative path to the more common (OK I heard about them before) YACC/BISON approach, which it turns out also commonly use LEX/FLEX as a front end.
a Quick read of the FLEX man page kind of make me think It could be the framework for that regex type of idea..
Ok.. I'll let this stew a little longer, then see how quickly I can build a prototype parser in one or the other.
and a little bit longer

Resources