Elasticsearch multi term search - elasticsearch

I am using Elasticsearch to allow a user to type in a term to search. I have the following property 'name' I'd like to search, for instance:
'name': 'The car is black'
I'd like to have this document returned if the following is used to search black car or car black.
I've tried doing a bool must and doing multiple terms ['black', 'car'] but it seems like it only works if the entire string is a match.
So what I'd really like to do is more of a, does the term contain both words in any order.
Can someone please get me on the right track? I've been banging my head on this one for a while.

If it seems like it only works if the entire string is a match, first make sure that in index mapping your string property name is analysed, i.e. mapping for this property doesn't contain "index": "not_analyzed". If it isn't so, you'll need to reindex your index in order to be able to search for tokens rather than for the whole phrase only.
Once you're sure your strings are analysed you can use:
Terms query with "minimum_should_match" parameter equalling to the number of words entered.
Bool query with must clause containing term queries per each word.
Common terms query which has a nice clean syntax for this purpose (you don't need to break down input string and construct more complex query structure in your app like with previous two) in addition to taking a smarter approach to stopwords analysing.

Related

Elasticsearch - match by all terms but full field must be matched

I'm trying to improve search on my service but get stuck on complex queries.
I need to match some documents by terms but return only documents that contains all of provided terms in any order and contains only this terms.
So for example, lets take movie titles:
"Jurassic Park"
"Lost World: Jurassic Park"
"Jurassic Park III"
When I type "Park Jurassic" I want only first document to be returned because it contains both words and nothing more.
This is silly example of complex problem but I've simplified it.
I tried with terms queries, match etc but I don't know how to check if entire field was matched.
So in short it must match all tokens in any order.
Field is mapped as text and also as keyword.
You tested the terms set query?
Returns documents that contain a minimum number of exact terms in a
provided field.
The terms_set query is the same as the terms query, except you can
define the number of matching terms required to return a document.

Avoid part of a string search in elasticsearch

I have a scenario where i want to search for 'bank of india' and documents retrieved have hits for 'reserve bank of india', 'state bank of india', etc. Basically the search string named entity is part of another named entity as well.
What are the ways to avoid it in elasticsearch?
If you use keyword type instead of text as the mapping for your entity field you will no longer have those partial matches. keyword says treat this text like a single unit (named entities are like this), while text says treat each word as a unit and consider the field as a bag of words, So the query looks for the most word matches, regardless of order or if all of the words are there. There are different queries that can get at that requiring order (match_phrase) and requiring all words to be matches (minimum_should_match parameter), but I like to use the term query if you follow the keyword mapping strategy. Does that make sense?

ElasticSearch: term vs match query decision

Being new to ElasticSearch, need help in my understanding.
What I read about term vs match query is that term query is used for exact match and match query is used when we are searching for a term and want result based on a relevancy score.
But if we already defined a mapping for a field as a keyword, why anyone has to decide upon between term vs match, wouldn't it be always a term query in case mapping is defined as a keyword?
What are the use cases where someone will make a match query on the keyword mapping field?
The same confusion is vice versa.
A text field will be analyzed (transformed, split) to generate N tokens, and the keyword itself will become a token with no transformations. At the end, you have N tokens referencing a document.
Then.
By doing a match query, you will treat your query as a text as well, by analyzing it before performing the matching (transforming it), and the term will not.
You can create a field with a term mapping, but then perform a match query on top of it (for example if you want to be case insensitive), and you can create a text mapping for a n-gram and perform a term query to match exactly what you're asking for.

ElasticSearch and Searching in Arrays

We have an ES index which has a field which stores its data as an array. In this field, we include the original text, plus text without any punctuation, special characters, etc. The problem is, when searching on the field, the multiple values appears to be skewing the score.
For example, if we search on the term 'up', the document which has the array ['up, up and away', 'up up and away'] is scoring higher with a multi_match (we are using because we may search more than one field) than the document with the array as simply ['up'].
In the end, I guess what I am looking for is a score that emulates calculating a score for each item in the array and returning me the highest. I believe in this case, comparing 'up' to 'Up' and 'Up, Up and Away' will give me a higher score for 'Up'.
With my research, I believe I may need to do custom scoring on this field...? If that is true, am I looking at "score_mode": "max" as what I want?
I think you slightly over-engineered your index. You don't need to create duplicate fields for the same information and remove punctuation, lowercase fields yourself.
I'd recommend you to read what are elasticsearch token filters and how to create multiple analyzers for the same field.
For your exact use case, if you provided a document sample, it would certainly help. But in any case looking at what you are dealing with - index your array of strings with default analyzer and with a custom one that you'll build yourself. Then you can use the same field, but with different analyzers (differently processed text) to control your score.

Elastic search giving strange results

I am following this tutorial on elastic search.
Two employees have 'about' value as:
"about": "I love to go rock climbing"
"about": "I like to collect rock albums"
I run following query:
GET /megacorp/employee/_search {"query":{"match":{"about":"rock coll"}}}
Both above entries are returned, but surprisingly wit same score:
"_score": 0.2876821
Shouldn't the second one must have higher score as it has 'about' value containing both 'rock' and 'coll' while first one only contains 'rock'?
That totally depends on what analyzer you are using. if you are using standard or english analyzer this result is correct. I recommend you to spend some time working with elasticsearch's Analyze API to get familiar how each analyzer affect your text.
By the way, if you want second document to have higher score, take a look at Partial matching.
When we search on a full-text field, we need to pass the query string through the same analysis process as we have when we index a document, to ensure that we are searching for terms in the same form as those that exist in the index.
Analysis process usually consists of normalization and tokenization (the string is tokenized into individual terms by a tokenizer).
As for match Query:
If you run a match query against a full-text field, it will analyze the query string by using the correct analyzer for that field before executing the search. It just looks for the words that are specified.
So, in your match query Elasticsearch will look for occurrences of the whole separate words: rock or/and coll.
Your 2nd document doesn't contain a separate word coll but was matched by the word rock.
Conclusion: the 2 documents are equivalent in their _score value (they were matched by the same word rock)
Elasticsearch analyzes each text field before storing it. The default analyzer (standard analyzer) splits the text based on whitespaces and lowercases it. The output of analysis process is a list of tokens which are used to match your query tokens. If any of the tokens match exactly the relevant document is returned. That's being said, your second document doesn't contain the token col and that's why you are having the same score for both documents.
Even if you build your custom analyzer and use stemming, the word collect won't be stemmed as coll.
You can build custom analyzers in which you can specify that tokens should be of length 1 character, then Elasticsearch will consider each single character as a token and you can search for the existence of any character in your documents.

Resources