Garbage collector in Ruby 2.2 provokes unexpected CoW - ruby

How do I prevent the GC from provoking copy-on-write, when I fork my process ? I have recently been analyzing the garbage collector's behavior in Ruby, due to some memory issues that I encountered in my program (I run out of memory on my 60core 0.5Tb machine even for fairly small tasks). For me this really limits the usefulness of ruby for running programs on multicore servers. I would like to present my experiments and results here.
The issue arises when the garbage collector runs during forking. I have investigated three cases that illustrate the issue.
Case 1: We allocate a lot of objects (strings no longer than 20 bytes) in the memory using an array. The strings are created using a random number and string formatting. When the process forks and we force the GC to run in the child, all the shared memory goes private, causing a duplication of the initial memory.
Case 2: We allocate a lot of objects (strings) in the memory using an array, but the string is created using the rand.to_s function, hence we remove the formatting of the data compared to the previous case. We end up with a smaller amount of memory being used, presumably due to less garbage. When the process forks and we force the GC to run in the child, only part of the memory goes private. We have a duplication of the initial memory, but to a smaller extent.
Case 3: We allocate fewer objects compared to before, but the objects are bigger, such that the amount of memory allocated stays the same as in the previous cases. When the process forks and we force the GC to run in the child all the memory stays shared, i.e. no memory duplication.
Here I paste the Ruby code that has been used for these experiments. To switch between cases you only need to change the “option” value in the memory_object function. The code was tested using Ruby 2.2.2, 2.2.1, 2.1.3, 2.1.5 and 1.9.3 on an Ubuntu 14.04 machine.
Sample output for case 1:
ruby version 2.2.2
proces pid log priv_dirty shared_dirty
Parent 3897 post alloc 38 0
Parent 3897 4 fork 0 37
Child 3937 4 initial 0 37
Child 3937 8 empty GC 35 5
The exact same code has been written in Python and in all cases the CoW works perfectly fine.
Sample output for case 1:
python version 2.7.6 (default, Mar 22 2014, 22:59:56)
[GCC 4.8.2]
proces pid log priv_dirty shared_dirty
Parent 4308 post alloc 35 0
Parent 4308 4 fork 0 35
Child 4309 4 initial 0 35
Child 4309 10 empty GC 1 34
Ruby code
$start_time=Time.new
# Monitor use of Resident and Virtual memory.
class Memory
shared_dirty = '.+?Shared_Dirty:\s+(\d+)'
priv_dirty = '.+?Private_Dirty:\s+(\d+)'
MEM_REGEXP = /#{shared_dirty}#{priv_dirty}/m
# get memory usage
def self.get_memory_map( pids)
memory_map = {}
memory_map[ :pids_found] = {}
memory_map[ :shared_dirty] = 0
memory_map[ :priv_dirty] = 0
pids.each do |pid|
begin
lines = nil
lines = File.read( "/proc/#{pid}/smaps")
rescue
lines = nil
end
if lines
lines.scan(MEM_REGEXP) do |shared_dirty, priv_dirty|
memory_map[ :pids_found][pid] = true
memory_map[ :shared_dirty] += shared_dirty.to_i
memory_map[ :priv_dirty] += priv_dirty.to_i
end
end
end
memory_map[ :pids_found] = memory_map[ :pids_found].keys
return memory_map
end
# get the processes and get the value of the memory usage
def self.memory_usage( )
pids = [ $$]
result = self.get_memory_map( pids)
result[ :pids] = pids
return result
end
# print the values of the private and shared memories
def self.log( process_name='', log_tag="")
if process_name == "header"
puts " %-6s %5s %-12s %10s %10s\n" % ["proces", "pid", "log", "priv_dirty", "shared_dirty"]
else
time = Time.new - $start_time
mem = Memory.memory_usage( )
puts " %-6s %5d %-12s %10d %10d\n" % [process_name, $$, log_tag, mem[:priv_dirty]/1000, mem[:shared_dirty]/1000]
end
end
end
# function to delay the processes a bit
def time_step( n)
while Time.new - $start_time < n
sleep( 0.01)
end
end
# create an object of specified size. The option argument can be changed from 0 to 2 to visualize the behavior of the GC in various cases
#
# case 0 (default) : we make a huge array of small objects by formatting a string
# case 1 : we make a huge array of small objects without formatting a string (we use the to_s function)
# case 2 : we make a smaller array of big objects
def memory_object( size, option=1)
result = []
count = size/20
if option > 3 or option < 1
count.times do
result << "%20.18f" % rand
end
elsif option == 1
count.times do
result << rand.to_s
end
elsif option == 2
count = count/10
count.times do
result << ("%20.18f" % rand)*30
end
end
return result
end
##### main #####
puts "ruby version #{RUBY_VERSION}"
GC.disable
# print the column headers and first line
Memory.log( "header")
# Allocation of memory
big_memory = memory_object( 1000 * 1000 * 10)
Memory.log( "Parent", "post alloc")
lab_time = Time.new - $start_time
if lab_time < 3.9
lab_time = 0
end
# start the forking
pid = fork do
time = 4
time_step( time + lab_time)
Memory.log( "Child", "#{time} initial")
# force GC when nothing happened
GC.enable; GC.start; GC.disable
time = 8
time_step( time + lab_time)
Memory.log( "Child", "#{time} empty GC")
sleep( 1)
STDOUT.flush
exit!
end
time = 4
time_step( time + lab_time)
Memory.log( "Parent", "#{time} fork")
# wait for the child to finish
Process.wait( pid)
Python code
import re
import time
import os
import random
import sys
import gc
start_time=time.time()
# Monitor use of Resident and Virtual memory.
class Memory:
def __init__(self):
self.shared_dirty = '.+?Shared_Dirty:\s+(\d+)'
self.priv_dirty = '.+?Private_Dirty:\s+(\d+)'
self.MEM_REGEXP = re.compile("{shared_dirty}{priv_dirty}".format(shared_dirty=self.shared_dirty, priv_dirty=self.priv_dirty), re.DOTALL)
# get memory usage
def get_memory_map(self, pids):
memory_map = {}
memory_map[ "pids_found" ] = {}
memory_map[ "shared_dirty" ] = 0
memory_map[ "priv_dirty" ] = 0
for pid in pids:
try:
lines = None
with open( "/proc/{pid}/smaps".format(pid=pid), "r" ) as infile:
lines = infile.read()
except:
lines = None
if lines:
for shared_dirty, priv_dirty in re.findall( self.MEM_REGEXP, lines ):
memory_map[ "pids_found" ][pid] = True
memory_map[ "shared_dirty" ] += int( shared_dirty )
memory_map[ "priv_dirty" ] += int( priv_dirty )
memory_map[ "pids_found" ] = memory_map[ "pids_found" ].keys()
return memory_map
# get the processes and get the value of the memory usage
def memory_usage( self):
pids = [ os.getpid() ]
result = self.get_memory_map( pids)
result[ "pids" ] = pids
return result
# print the values of the private and shared memories
def log( self, process_name='', log_tag=""):
if process_name == "header":
print " %-6s %5s %-12s %10s %10s" % ("proces", "pid", "log", "priv_dirty", "shared_dirty")
else:
global start_time
Time = time.time() - start_time
mem = self.memory_usage( )
print " %-6s %5d %-12s %10d %10d" % (process_name, os.getpid(), log_tag, mem["priv_dirty"]/1000, mem["shared_dirty"]/1000)
# function to delay the processes a bit
def time_step( n):
global start_time
while (time.time() - start_time) < n:
time.sleep( 0.01)
# create an object of specified size. The option argument can be changed from 0 to 2 to visualize the behavior of the GC in various cases
#
# case 0 (default) : we make a huge array of small objects by formatting a string
# case 1 : we make a huge array of small objects without formatting a string (we use the to_s function)
# case 2 : we make a smaller array of big objects
def memory_object( size, option=2):
count = size/20
if option > 3 or option < 1:
result = [ "%20.18f"% random.random() for i in xrange(count) ]
elif option == 1:
result = [ str( random.random() ) for i in xrange(count) ]
elif option == 2:
count = count/10
result = [ ("%20.18f"% random.random())*30 for i in xrange(count) ]
return result
##### main #####
print "python version {version}".format(version=sys.version)
memory = Memory()
gc.disable()
# print the column headers and first line
memory.log( "header") # Print the headers of the columns
# Allocation of memory
big_memory = memory_object( 1000 * 1000 * 10) # Allocate memory
memory.log( "Parent", "post alloc")
lab_time = time.time() - start_time
if lab_time < 3.9:
lab_time = 0
# start the forking
pid = os.fork() # fork the process
if pid == 0:
Time = 4
time_step( Time + lab_time)
memory.log( "Child", "{time} initial".format(time=Time))
# force GC when nothing happened
gc.enable(); gc.collect(); gc.disable();
Time = 10
time_step( Time + lab_time)
memory.log( "Child", "{time} empty GC".format(time=Time))
time.sleep( 1)
sys.exit(0)
Time = 4
time_step( Time + lab_time)
memory.log( "Parent", "{time} fork".format(time=Time))
# Wait for child process to finish
os.waitpid( pid, 0)
EDIT
Indeed, calling the GC several times before forking the process solves the issue and I am quite surprised. I have also run the code using Ruby 2.0.0 and the issue doesn't even appear, so it must be related to this generational GC just like you mentioned.
However, if I call the memory_object function without assigning the output to any variables (I am only creating garbage), then the memory is duplicated. The amount of memory that is copied depends on the amount of garbage that I create - the more garbage, the more memory becomes private.
Any ideas how I can prevent this ?
Here are some results
Running the GC in 2.0.0
ruby version 2.0.0
proces pid log priv_dirty shared_dirty
Parent 3664 post alloc 67 0
Parent 3664 4 fork 1 69
Child 3700 4 initial 1 69
Child 3700 8 empty GC 6 65
Calling memory_object( 1000*1000) in the child
ruby version 2.0.0
proces pid log priv_dirty shared_dirty
Parent 3703 post alloc 67 0
Parent 3703 4 fork 1 70
Child 3739 4 initial 1 70
Child 3739 8 empty GC 15 56
Calling memory_object( 1000*1000*10)
ruby version 2.0.0
proces pid log priv_dirty shared_dirty
Parent 3743 post alloc 67 0
Parent 3743 4 fork 1 69
Child 3779 4 initial 1 69
Child 3779 8 empty GC 89 5

UPD2
Suddenly figured out why all the memory is going private if you format the string -- you generate garbage during formatting, having GC disabled, then enable GC, and you've got holes of released objects in your generated data. Then you fork, and new garbage starts to occupy these holes, the more garbage - more private pages.
So i added a cleanup function to run GC each 2000 cycles (just enabling lazy GC didn't help):
count.times do |i|
cleanup(i)
result << "%20.18f" % rand
end
#......snip........#
def cleanup(i)
if ((i%2000).zero?)
GC.enable; GC.start; GC.disable
end
end
##### main #####
Which resulted in(with generating memory_object( 1000 * 1000 * 10) after fork):
RUBY_GC_HEAP_INIT_SLOTS=600000 ruby gc-test.rb 0
ruby version 2.2.0
proces pid log priv_dirty shared_dirty
Parent 2501 post alloc 35 0
Parent 2501 4 fork 0 35
Child 2503 4 initial 0 35
Child 2503 8 empty GC 28 22
Yes, it affects performance, but only before forking, i.e. increase load time in your case.
UPD1
Just found criteria by which ruby 2.2 sets old object bits, it's 3 GC's, so if you add following before forking:
GC.enable; 3.times {GC.start}; GC.disable
# start the forking
you will get(the option is 1 in command line):
$ RUBY_GC_HEAP_INIT_SLOTS=600000 ruby gc-test.rb 1
ruby version 2.2.0
proces pid log priv_dirty shared_dirty
Parent 2368 post alloc 31 0
Parent 2368 4 fork 1 34
Child 2370 4 initial 1 34
Child 2370 8 empty GC 2 32
But this needs to be further tested concerning the behavior of such objects on future GC's, at least after 100 GC's :old_objects remains constant, so i suppose it should be OK
Log with GC.stat is here
By the way there's also option RGENGC_OLD_NEWOBJ_CHECK to create old objects from the beginning, but i doubt it's a good idea, but may be useful for a particular case.
First answer
My proposition in the comment above was wrong, actually bitmap tables are the savior.
(option = 1)
ruby version 2.0.0
proces pid log priv_dirty shared_dirty
Parent 14807 post alloc 27 0
Parent 14807 4 fork 0 27
Child 14809 4 initial 0 27
Child 14809 8 empty GC 6 25 # << almost everything stays shared <<
Also had by hand and tested Ruby Enterprise Edition it's only half better than worst cases.
ruby version 1.8.7
proces pid log priv_dirty shared_dirty
Parent 15064 post alloc 86 0
Parent 15064 4 fork 2 84
Child 15065 4 initial 2 84
Child 15065 8 empty GC 40 46
(I made the script run strictly 1 GC, by increasing RUBY_GC_HEAP_INIT_SLOTS to 600k)

Related

How to eliminate JIT overhead in a Julia executable (with MWE)

I'm using PackageCompiler hoping to create an executable that eliminates just-in-time compilation overhead.
The documentation explains that I must define a function julia_main to call my program's logic, and write a "snoop file", a script that calls functions I wish to precompile. My julia_main takes a single argument, the location of a file containing the input data to be analysed. So to keep things simple my snoop file simply makes one call to julia_main with a particular input file. So I'd hope to see the generated executable run nice and fast (no compilation overhead) when executed against that same input file.
But alas, that's not what I see. In a fresh Julia instance julia_main takes approx 74 seconds for the first execution and about 4.5 seconds for subsequent executions. The executable file takes approx 50 seconds each time it's called.
My use of the build_executable function looks like this:
julia> using PackageCompiler
julia> build_executable("d:/philip/source/script/julia/jsource/SCRiPTMain.jl",
"testexecutable",
builddir = "d:/temp/builddir4",
snoopfile = "d:/philip/source/script/julia/jsource/snoop.jl",
compile = "all",
verbose = true)
Questions:
Are the above arguments correct to achieve my aim of an executable with no JIT overhead?
Any other advice for me?
Here's what happens in response to that call to build_executable. The lines from Start of snoop file execution! to End of snoop file execution! are emitted by my code.
Julia program file:
"d:\philip\source\script\julia\jsource\SCRiPTMain.jl"
C program file:
"C:\Users\Philip\.julia\packages\PackageCompiler\CJQcs\examples\program.c"
Build directory:
"d:\temp\builddir4"
Executing snoopfile: "d:\philip\source\script\julia\jsource\snoop.jl"
Start of snoop file execution!
┌ Warning: The 'control file' contains the key 'InterpolateCovariance' with value 'true' but that is not supported. Pass a value of 'false' or omit the key altogether.
└ # ValidateInputs d:\Philip\Source\script\Julia\JSource\ValidateInputs.jl:685
Time to build model 20.058000087738037
Saving c:/temp/SCRiPT/SCRiPTModel.jls
Results written to c:/temp/SCRiPT/SCRiPTResultsJulia.json
Time to write file: 3620 milliseconds
Time in method runscript: 76899 milliseconds
End of snoop file execution!
[ Info: used 1313 out of 1320 precompile statements
Build static library "testexecutable.a":
atexit_hook_copy = copy(Base.atexit_hooks) # make backup
# clean state so that any package we use can carelessly call atexit
empty!(Base.atexit_hooks)
Base.__init__()
Sys.__init__() #fix https://github.com/JuliaLang/julia/issues/30479
using REPL
Base.REPL_MODULE_REF[] = REPL
Mod = #eval module $(gensym("anon_module")) end
# Include into anonymous module to not polute namespace
Mod.include("d:\\\\temp\\\\builddir4\\\\julia_main.jl")
Base._atexit() # run all exit hooks we registered during precompile
empty!(Base.atexit_hooks) # don't serialize the exit hooks we run + added
# atexit_hook_copy should be empty, but who knows what base will do in the future
append!(Base.atexit_hooks, atexit_hook_copy)
Build shared library "testexecutable.dll":
`'C:\Users\Philip\.julia\packages\WinRPM\Y9QdZ\deps\usr\x86_64-w64-mingw32\sys-root\mingw\bin\gcc.exe' --sysroot 'C:\Users\Philip\.julia\packages\WinRPM\Y9QdZ\deps\usr\x86_64-w64-mingw32\sys-root' -shared '-DJULIAC_PROGRAM_LIBNAME="testexecutable.dll"' -o testexecutable.dll -Wl,--whole-archive testexecutable.a -Wl,--no-whole-archive -std=gnu99 '-IC:\Users\philip\AppData\Local\Julia-1.2.0\include\julia' -DJULIA_ENABLE_THREADING=1 '-LC:\Users\philip\AppData\Local\Julia-1.2.0\bin' -Wl,--stack,8388608 -ljulia -lopenlibm -m64 -Wl,--export-all-symbols`
Build executable "testexecutable.exe":
`'C:\Users\Philip\.julia\packages\WinRPM\Y9QdZ\deps\usr\x86_64-w64-mingw32\sys-root\mingw\bin\gcc.exe' --sysroot 'C:\Users\Philip\.julia\packages\WinRPM\Y9QdZ\deps\usr\x86_64-w64-mingw32\sys-root' '-DJULIAC_PROGRAM_LIBNAME="testexecutable.dll"' -o testexecutable.exe 'C:\Users\Philip\.julia\packages\PackageCompiler\CJQcs\examples\program.c' testexecutable.dll -std=gnu99 '-IC:\Users\philip\AppData\Local\Julia-1.2.0\include\julia' -DJULIA_ENABLE_THREADING=1 '-LC:\Users\philip\AppData\Local\Julia-1.2.0\bin' -Wl,--stack,8388608 -ljulia -lopenlibm -m64`
Copy Julia libraries to build directory:
7z.dll
BugpointPasses.dll
libamd.2.4.6.dll
libamd.2.dll
libamd.dll
libatomic-1.dll
libbtf.1.2.6.dll
libbtf.1.dll
libbtf.dll
libcamd.2.4.6.dll
libcamd.2.dll
libcamd.dll
libccalltest.dll
libccolamd.2.9.6.dll
libccolamd.2.dll
libccolamd.dll
libcholmod.3.0.13.dll
libcholmod.3.dll
libcholmod.dll
libclang.dll
libcolamd.2.9.6.dll
libcolamd.2.dll
libcolamd.dll
libdSFMT.dll
libexpat-1.dll
libgcc_s_seh-1.dll
libgfortran-4.dll
libgit2.dll
libgmp.dll
libjulia.dll
libklu.1.3.8.dll
libklu.1.dll
libklu.dll
libldl.2.2.6.dll
libldl.2.dll
libldl.dll
libllvmcalltest.dll
libmbedcrypto.dll
libmbedtls.dll
libmbedx509.dll
libmpfr.dll
libopenblas64_.dll
libopenlibm.dll
libpcre2-8-0.dll
libpcre2-8.dll
libpcre2-posix-2.dll
libquadmath-0.dll
librbio.2.2.6.dll
librbio.2.dll
librbio.dll
libspqr.2.0.9.dll
libspqr.2.dll
libspqr.dll
libssh2.dll
libssp-0.dll
libstdc++-6.dll
libsuitesparseconfig.5.4.0.dll
libsuitesparseconfig.5.dll
libsuitesparseconfig.dll
libsuitesparse_wrapper.dll
libumfpack.5.7.8.dll
libumfpack.5.dll
libumfpack.dll
libuv-2.dll
libwinpthread-1.dll
LLVM.dll
LLVMHello.dll
zlib1.dll
All done
julia>
EDIT
I was afraid that creating a minimal working example would be hard, but it was straightforward:
TestBuildExecutable.jl contains:
module TestBuildExecutable
Base.#ccallable function julia_main(ARGS::Vector{String}=[""])::Cint
#show sum(myarray())
return 0
end
#Function which takes approx 8 seconds to compile. Returns a 500 x 20 array of 1s
function myarray()
[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1;
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1;
# PLEASE EDIT TO INSERT THE MISSING 496 LINES, EACH IDENTICAL TO THE LINE ABOVE!
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1;
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]
end
end #module
SnoopFile.jl contains:
module SnoopFile
currentpath = dirname(#__FILE__)
push!(LOAD_PATH, currentpath)
unique!(LOAD_PATH)
using TestBuildExecutable
println("Start of snoop file execution!")
TestBuildExecutable.julia_main()
println("End of snoop file execution!")
end # module
In a fresh Julia instance, julia_main takes 8.3 seconds for the first execution and half a millisecond for the second execution:
julia> #time TestBuildExecutable.julia_main()
sum(myarray()) = 10000
8.355108 seconds (425.36 k allocations: 25.831 MiB, 0.06% gc time)
0
julia> #time TestBuildExecutable.julia_main()
sum(myarray()) = 10000
0.000537 seconds (25 allocations: 82.906 KiB)
0
So next I call build_executable:
julia> using PackageCompiler
julia> build_executable("d:/philip/source/script/julia/jsource/TestBuildExecutable.jl",
"testexecutable",
builddir = "d:/temp/builddir15",
snoopfile = "d:/philip/source/script/julia/jsource/SnoopFile.jl",
verbose = false)
Julia program file:
"d:\philip\source\script\julia\jsource\TestBuildExecutable.jl"
C program file:
"C:\Users\Philip\.julia\packages\PackageCompiler\CJQcs\examples\program.c"
Build directory:
"d:\temp\builddir15"
Start of snoop file execution!
sum(myarray()) = 10000
End of snoop file execution!
[ Info: used 79 out of 79 precompile statements
All done
Finally, in a Windows Command Prompt:
D:\temp\builddir15>testexecutable
sum(myarray()) = 1000
D:\temp\builddir15>
which took (by my stopwatch) 8 seconds to run, and it takes 8 seconds to run every time it's executed, not just the first time. This is consistent with the executable doing a JIT compile every time it's run, but the snoop file is designed to avoid that!
Version information:
julia> versioninfo()
Julia Version 1.2.0
Commit c6da87ff4b (2019-08-20 00:03 UTC)
Platform Info:
OS: Windows (x86_64-w64-mingw32)
CPU: Intel(R) Core(TM) i7-6700 CPU # 3.40GHz
WORD_SIZE: 64
LIBM: libopenlibm
LLVM: libLLVM-6.0.1 (ORCJIT, skylake)
Environment:
JULIA_NUM_THREADS = 8
JULIA_EDITOR = "C:\Users\Philip\AppData\Local\Programs\Microsoft VS Code\Code.exe"
Looks like you are using Windows.
At some point PackageCompiler.jl will be mature for Windows at which you can try it.
The solution was indeed to wait for progress on PackageCompilerX, as suggested by #xiaodai.
On 10 Feb 2020 what was formerly PackageCompilerX became a new (version 1.0 of) PackageCompiler, with a significantly changed API, and more thorough documentation.
In particular, the MWE above (mutated for the new API to PackageCompiler) now works correctly without any JIT overhead.

fast loading of large hash table in Perl

I have about 30 text files with the structure
wordleft1|wordright1
wordleft2|wordright2
wordleft3|wordright3
...
The total size of the files is about 1 GB with about 32 million lines of word combinations.
I tried a few approaches to load them as fast as possible and store the combinations within a hash
$hash{$wordleft} = $wordright
Opening file by file and reading line by line takes about 42 seconds. I then store the hash with the Storable module
store \%hash, $filename
Loading the data again
$hashref = retrieve $filename
reduces the time to about 28 seconds. I use a fast SSD drive and a fast CPU and have enough RAM to hold all the data (it takes about 7 GB).
I'm searching for a faster way to load this data into the RAM (I can't keep it there for a few reasons).
You could try using Dan Bernstein's CDB file format using a tied hash, which will require minimal code change. You may need to install CDB_File. On my laptop, the cdb file is opened very quickly and I can do about 200-250k lookups per second. Here is an example script to create/use/benchmark a cdb:
test_cdb.pl
#!/usr/bin/env perl
use warnings;
use strict;
use Benchmark qw(:all) ;
use CDB_File 'create';
use Time::HiRes qw( gettimeofday tv_interval );
scalar #ARGV or die "usage: $0 number_of_keys seconds_to_benchmark\n";
my ($size) = $ARGV[0] || 1000;
my ($seconds) = $ARGV[1] || 10;
my $t0;
tic();
# Create CDB
my ($file, %data);
%data = map { $_ => 'something' } (1..$size);
print "Created $size element hash in memory\n";
toc();
$file = 'data.cdb';
create %data, $file, "$file.$$";
my $bytes = -s $file;
print "Created data.cdb [ $size keys and values, $bytes bytes]\n";
toc();
# Read from CDB
my $c = tie my %h, 'CDB_File', 'data.cdb' or die "tie failed: $!\n";
print "Opened data.cdb as a tied hash.\n";
toc();
timethese( -1 * $seconds, {
'Pick Random Key' => sub { int rand $size },
'Fetch Random Value' => sub { $h{ int rand $size }; },
});
tic();
print "Fetching Every Value\n";
for (0..$size) {
no warnings; # Useless use of hash element
$h{ $_ };
}
toc();
sub tic {
$t0 = [gettimeofday];
}
sub toc {
my $t1 = [gettimeofday];
my $elapsed = tv_interval ( $t0, $t1);
$t0 = $t1;
print "==> took $elapsed seconds\n";
}
Output ( 1 million keys, tested over 10 seconds )
./test_cdb.pl 1000000 10
Created 1000000 element hash in memory
==> took 2.882813 seconds
Created data.cdb [ 1000000 keys and values, 38890944 bytes]
==> took 2.333624 seconds
Opened data.cdb as a tied hash.
==> took 0.00015 seconds
Benchmark: running Fetch Random Value, Pick Random Key for at least 10 CPU seconds...
Fetch Random Value: 10 wallclock secs (10.46 usr + 0.01 sys = 10.47 CPU) # 236984.72/s (n=2481230)
Pick Random Key: 9 wallclock secs (10.11 usr + 0.02 sys = 10.13 CPU) # 3117208.98/s (n=31577327)
Fetching Every Value
==> took 3.514183 seconds
Output ( 10 million keys, tested over 10 seconds )
./test_cdb.pl 10000000 10
Created 10000000 element hash in memory
==> took 44.72331 seconds
Created data.cdb [ 10000000 keys and values, 398890945 bytes]
==> took 25.729652 seconds
Opened data.cdb as a tied hash.
==> took 0.000222 seconds
Benchmark: running Fetch Random Value, Pick Random Key for at least 10 CPU seconds...
Fetch Random Value: 14 wallclock secs ( 9.65 usr + 0.35 sys = 10.00 CPU) # 209811.20/s (n=2098112)
Pick Random Key: 12 wallclock secs (10.40 usr + 0.02 sys = 10.42 CPU) # 2865335.22/s (n=29856793)
Fetching Every Value
==> took 38.274356 seconds
It sounds like you do have a good use case for wanting an in-memory perl hash.
For faster storing/retrieving, I would recommend Sereal (Sereal::Encoder/Sereal::Decoder). If your disk storage is slow, you may even want to enable Snappy compression.

ArgumentError: In `load': marshal data too short

I want to realize multiple processes. I have to send the data which bubble-sorted in different child processes back to parent process then merge data. This is part of my code:
rd1,wt1 = IO.pipe # reader & writer
pid1 = fork {
rd1.close
numbers = Marshal.load(Marshal.dump(copylist[0,p]))
bubble_sort(numbers)
sList[0] = numbers.clone
wt1.write Marshal.dump(sList[0])
Process.exit!(true)
}
Process.waitpid(pid1)
Process.waitpid(pid2)
wt1.close
wt2.close
pid5 = fork {
rd5.close
a = Marshal.load(rd1.gets)
b = Marshal.load(rd2.gets)
mList[0] = merge( a,b).clone
wt5.write Marshal.dump(mList[0])
Process.exit!(true)
}
There are pid1...pid7, rd1...rd7, wt1...wt7. pid1...pid4 are bubble-sort 4 part of data. pid5 and 6 merge data from pid1, 2 and pid 3, 4. Finally, pid7 merges the data from pid5 and 6.
When data size is small, it succeeds, but when I input larger data (10000):
Data example : 121 45 73 89 11 452 515 32 1 99 4 88 41 53 159 482 2013 2 ...
then, errors occur: :in 'load': marshal data too short (ArgumentError) and another kind error: in 'load': instance of IO needed (TypeError). The first error line is in pid5: a = ... and pid6: b = .... The other kind of error line is in pid7: b = .... Are my data too big for this method?
Marshal.load and Marshal.dump work with binary data. The problem with the short reads is here:
a = Marshal.load(rd1.gets)
b = Marshal.load(rd2.gets)
#gets reads up to a new-line (or end of file) and then stops. The trouble is that new-line may be present in the binary data created by Marshal.dump.
Change gets to read in both lines.

Perform a loop for a certain time interval or while condition is met

I am trying to have a check fire off every second for 30 seconds. I haven't found a clear way to do this with Ruby yet. Trying something like this currently:
until counter == 30
sleep 1
if condition
do something
break
else
counter +=1
end
Problem with something like that is it has to use sleep, which stops the thread in its tracks for a full second. Is there another way to achieve something similar to the above without the use of sleep? Is there a way to have something cycle though on a time based interval?
You can approximate what you're looking for with something along these lines:
now = Time.now
counter = 1
loop do
if Time.now < now + counter
next
else
puts "counting another second ..."
end
counter += 1
break if counter > 30
end
You could do something simple like..
max_runtime = 10.seconds.from_now
puts 'whatever' until Time.now > max_runtime
you can try this it allows for interval controls
counter == 30
interval = 5 # Check every 5 seconds
interval_timer = 1 # must start at 1
now = Time.now
while Time.now - now < counter
if interval_timer % interval == 0 #Every 5 attempts the activity will process
if condition
stuff
end
end
process_timer = process_timer + 1
end
This will happen under a guaranteed 30 seconds the interval can be set to any value 1 or greater. Some things process via milliseconds this will give you an option that will save you cycles on processing. Works well in graphics processing.

Ruby big array and memory

I created a big array a, whose memory grew to ~500 MB:
a = []
t = Thread.new do
loop do
sleep 1
print "#{a.size} "
end
end
5_000_000.times do
a << [rand(36**10).to_s(36)]
end
puts "\n size is #{a.size}"
a = []
t.join
After that, I "cleared" a, but the allocated memory didn't change until I killed the process. Is there something special I need to do to remove all these data which were assigned to a from the memory?
If I use the Ruby Garbage Collection Profiler on a lightly modified version of your code:
GC::Profiler.enable
GC::Profiler.clear
a = []
5_000_000.times do
a << [rand(36**10).to_s(36)]
end
puts "\n size is #{a.size}"
a = []
GC::Profiler.report
I get the following output (on Ruby 1.9.3)(some columns and rows removed):
GC 60 invokes.
Index Invoke Time(sec) Use Size(byte) Total Size(byte) ...
1 0.109 131136 409200 ...
2 0.125 192528 409200 ...
...
58 33.484 199150344 260938656 ...
59 36.000 211394640 260955024 ...
The profile starts with 131 136 bytes used, and ends with 211 394 640 bytes used, without decreasing in size anywhere in the run, we can assume that no garbage collection has taken place.
If I then add a line of code which adds a single element to the array a, placed after a has grown to 5 million elements, and then has an empty array assigned to it:
GC::Profiler.enable
GC::Profiler.clear
a = []
5_000_000.times do
a << [rand(36**10).to_s(36)]
end
puts "\n size is #{a.size}"
a = []
# the only change is to add one element to the (now) empty array a
a << [rand(36**10).to_s(36)]
GC::Profiler.report
This changes the profiler output to (some columns and rows removed):
GC 62 invokes.
Index Invoke Time(sec) Use Size(byte) Total Size(byte) ...
1 0.156 131376 409200 ...
2 0.172 192792 409200 ...
...
59 35.375 211187736 260955024 ...
60 36.625 211395000 469679760 ...
61 41.891 2280168 307832976 ...
This profiler run now starts with 131 376 bytes used, which is similar to the previous run, grows, but ends with 2 280 168 bytes used, significantly lower than the previous profile run that ended with 211 394 640 bytes used, we can assume that garbage collection took place this during this run, probably triggered by our new line of code that adds an element to a.
The short answer is no, you don't need to do anything special to remove the data that was assigned to a, but hopefully this gives you the tools to prove it.
You can call GC.start(), but you might not want to. See for example: Ruby garbage collect for a discussion here on Stack Overflow. Basically, I'd let the garbage collector decide for itself when to run unless you have a compelling reason to force it.

Resources