Given a set of rectangles represented as tuples (xmin, xmax, ymin, ymax) where xmin and xmax are the left and right edges, and ymin and ymax are the bottom and top edges, respectively - is there any pair of overlapping rectangles in the set?
A straightforward approach is to compare every pair of rectangles for overlap, but this is O(n^2) - it should be possible to do better.
Update: xmin, xmax, ymin, ymax are integers. So a condition for rectangle 1 and rectangle 2 to overlap is xmin_2 <= xmax_1 AND xmax_2 >= xmin_1; similarly for the Y coordinates.
If one rectangle contains another, the pair is considered overlapping.
You can do it in O(N log N) approach the following way.
Firstly, "squeeze" your y coordinates. That is, sort all y coordinates (tops and bottoms) together in one array, and then replace coordinates in your rectangle description by its index in a sorted array. Now you have all y's being integers from 0 to 2n-1, and the answer to your problem did not change (in case you have equal y's, see below).
Now you can divide the plane into 2n-1 stripes, each unit height, and each rectangle spans completely several of them. Prepare an segment tree for these stripes. (See this link for segment tree overview.)
Then, sort all x-coordinates in question (both left and right boundaries) in the same array, keeping for each coordinate the information from which rectangle it comes and whether this is a left or right boundary.
Then go through this list, and as you go, maintain list of all the rectangles that are currently "active", that is, for which you have seen a left boundary but not right boundary yet.
More exactly, in your segment tree you need to keep for each stripe how many active rectangles cover it. When you encounter a left boundary, you need to add 1 for all stripes between a corresponding rectangle's bottom and top. When you encounter a right boundary, you need to subtract one. Both addition and subtraction can be done in O(log N) using the mass update (lazy propagation) of the segment tree.
And to actually check what you need, when you meet a left boundary, before adding 1, check, whether there is at least one stripe between bottom and top that has non-zero coverage. This can be done in O(log N) by performing a sum on interval query in segment tree. If the sum on this interval is greater than 0, then you have an intersection.
squeeze y's
sort all x's
t = segment tree on 2n-1 cells
for all x's
r = rectangle for which this x is
if this is left boundary
if t.sum(r.bottom, r.top-1)>0 // O(log N) request
you have occurence
t.add(r.bottom, r.top-1, 1) // O(log N) request
else
t.subtract(r.bottom, r.top-1) // O(log N) request
You should implement it carefully taking into account whether you consider a touch to be an intersection or not, and this will affect your treatment of equal numbers. If you consider touch an intersection, then all you need to do is, when sorting y's, make sure that of all points with equal coordinates all tops go after all bottoms, and similarly when you sort x's, make sure that of all equal x's all lefts go before all rights.
Why don't you try a plane sweep algorithm? Plane sweep is a design paradigm widely used in computational geometry, so it has the advantage that it is well studied and a lot of documetation is available online. Take a look at this. The line segment intersection problem should give you some ideas, also the area of union of rectangles.
Read about Bentley-Ottman algorithm for line segment intersection, the problem is very similar to yours and it has O((n+k)logn) where k is the number of intersections, nevertheless, since your rectangles sides are parallel to the x and y axis, it is way more simpler so you can modify Bentley-Ottman to run in O(nlogn +k) since you won't need to update the event heap, since all intersections can be detected once the rectangle is visited and won't modify the sweep line ordering, so no need to mantain the events. To retrieve all intersecting rectangles with the new rectangle I suggest using a range tree on the ymin and ymax for each rectangle, it will give you all points lying in the interval defined by the ymin and ymax of the new rectangle and thus the rectangles intersecting it.
If you need more details you should take a look at chapter two of M. de Berg, et. al Computational Geometry book. Also take a look at this paper, they show how to find all intersections between convex polygons in O(nlogn + k), it might prove simpler than my above suggestion since all data strcutures are explained there and your rectangles are convex, a very good thing in this case.
You can do better by building a new list of rectangles that do not overlap. From the set of rectangles, take the first one and add it to the list. It obviously does not overlap with any others because it is the only one in the list. Take the next one from the set and see if it overlaps with the first one in the list. If it does, return true; otherwise, add it to the list. Repeat for all rectangles in the set.
Each time, you are comparing rectangle r with the r-1 rectangles in the list. This can be done in O(n*(n-1)/2) or O((n^2-n)/2). You can even apply this algorithm to the original set without having to create a new list.
Related
My input will be a list of x and y coordinates, those indicate the pixels on the picture. I will have a given radius r. For each pixel, I need to compute how many other pixels are inside the circle within the radius r. And I have to do this for all the points I have.
I understand that the brute force way to do this will be compare all other point to see if x^2+y^2 <= r^2. The complexity would be O(n^2). I am wondering if there's any approach that I can reduce the complexity to O(nlogn) or O(n)?
The mathematical answer is the area of the circle: Area = PI * r**2, though this includes partial pixels. To get the count of full pixels only, you will need to traverse an axis (x) and get the height of the other axis (y) at each point (rounded down). Do this for a quarter of the circle then multiple by 4. I'm assuming the entire circle is in the picture.
I think the complexity is O(n) based on the circle radius.
You can divide the plane into a grid with each cell having a width equal to the diameter of the circle and assign your points into bins for each cell in the grid. You can implement this as a hashmap/dictionary where the key is the top-left corner of the grid cell and the value is a list of points in the cell. Iterate through your list of points, work out which grid cell it's in and add to the appropriate list.
A circle with radius r can overlap at most 4 grid cells. Now you can iterate over the point list again and for each point you will only need to check the points in the grid cells overlapping the circle centred on the point.
This will reduce the number of checks you need to do but it is still O(n^2) in the pathological case where all points are with r of each other. To further optimize the algorithm, store a quadtree in each grid cell. Each node in the quadtree (the top node being the grid cell) stores a count of the number of points in the node and has up to 4 sub-nodes (empty nodes are not stored), the leaf nodes containing individual points. To test the points in a node against your point, first check if the entire node is within r of the point, if so you can count all the points without checking them individually. If not recurse into the sub-nodes that overlap the circle until you reach individual points to test or you get down to sub-nodes that lie entirely within or outside the circle.
The performance of these algorithms will be highly dependent on the distribution of your points.
If the problem is to count the points at maximum distance R to every point of a list of N points, you can use a kD-tree for acceleration.
With some care you can achieve a running time O(N Log N) for the setup of the tree, then hope for a query time of O(Log N + K) for counting, where K is the average number of neighbors.
This still makes a total of O(N Log N + KN). :-(
You're given a n points, unsorted in an array. You're supposed to find two rectangles that cover all points and they should not overlap. Edges of rectangles should be parallel to x or y ordinate.
The program should return the minimum area covered by all these dots. Area of first rectangle + area of second rectangle.
I tried to solve this problem. I sorted points by X ordinate and the first one is the leftmost one of the first rectangle. When we go through the points we find the highest and lowest one. I was thinking that when the difference between two points by x is the biggest, that means that the first point is rightmost one of the first rectangle, and the second point is the leftmost one of the second rectangle.
It should work when the points are given as in first example, however, if the example is the second one it doesn't work. As it would return something like this and that's wrong:
This should be correct:
Then i was thinking doing sorting twice, just, the second time do it by Y ordinate and then compare two total areas. Areas when points are sorted by x and when points are sorted by y and the smaller area is the correct answer.
The two rectangles cannot overlap, so one must be either completely to the right or on top of the other. Your idea to sort the points by x-value and find the biggest gap is good, but you should do that for both directions, as you suggested. That would find the correct rectangles in your example.
The biggest gap isn't necessarily the ideal splitting point, however. Depending on the extent of the bounding boxes in the perpendicular direction, the split may be somewhere else. Consider a rectangular area with four quadrants, where two diagonally opposite quadrants are populated with points:
Here, the ideal split isn't where the largest gap is.
You can find the ideal location by considering all possible splits between points with adjacent x- and y-coordinates.
Sort the points by x-coordinate.
Scan the sorted array in ascending order. Keep track of the minimum rectangle to the left of the current point by storing the minimum and maximum y-coordinates. Store these running top and bottom borders for each point.
Now do the same in descending order, where you keep running top and bottom borders for the right rectangle.
Finally, loop through the points again and calculate the areas of the left and right minimal rectangles for a split between two adjacent nodes. Keep track of the minimum area sum.
Then do the same for minimum top and bottom rectangles. The last two steps can be combined, which will save arrays for the minimum bounds for the right rectangle.
This should be O(n · log n) in time: Sorting is O(n · log n) and the individual passes are O(n). You need O(n) additional memory for the running bounding boxes for thze first rectangle.
The first observation is that any edge of a rectangle must touch one of the points. Edges that didn't touch a point could be pulled back, resulting in less area.
Given n points, there are thus n selections total for left1, right1, bottom1, top1, left2, right2, bottom2 and top2. This gives a simple O(n^8) algorithm already: try all possible assignments and remember the one giving the least total area (right1 - left1)(top1 - bottom1) + (right2 - left2)(top2 - bottom2). Indeed, you can skip any combinations with right < left or top < bottom. This gives a speedup, though it does not change the O(n^8) bound.
Another observation is that the edges should stay within the minimum and maximum X and Y bounds of all points. Find the minimum and maximum X and Y values of any points. Call these minX, maxX, minY and maxY. At least one of your rectangles will need to have its left, right, bottom and top edges, respectively, at those levels.
Because minx, maxX, minY and maxY must be assigned to one of the two rectangles, and there are exactly 2^4 = 16 ways to do this, you can try each of the four possible assignments with the remaining coordinates assigned as above. This gives an O(n^4) algorithm: O(n) to get minX, maxX, minY and maxY, and then O(n^4) to fill in the four unassigned variables for each of 16 assignments of minX, maxX, minY and maxY to the eight edge coordinates.
We have so far ignored the requirement that rectangles not overlap. To accommodate that, we must ensure at least one of the following four conditions holds true:
a horizontal line at Y coordinate h with top1 <= h <= bottom2
a horizontal line at Y coordinate h with top2 <= h <= bottom1
a vertical line at X coordinate w with right1 <= h <= left2
a vertical line at X coordinate w with right2 <= h <= left1
The two rectangles overlap if and only if all four of these conditions are simultaneously false. This allows us to skip over candidate solutions, giving a speedup but not changing the asymptotic bound O(n^4). Note that we need to check this condition specifically since, otherwise, optimal solutions might have overlap (exercise: show such an example).
Let's try to shave some more time off of this. Assume we have non-overlapping rectangles by condition #1 above. Then there are n choices for h; we can try each of these n choices and then determine the area of the resulting selections by finding the minimum and maximum coordinates of points in the resulting halves. By trying all n selections for h, we can determine the "best case" vertical split. We need not try condition #2, since the only difference is in the ordering of the rectangles which is arbitrary. We must also try condition #3 with a horizontal split. This suggests an O(n^2) algorithm:
For each point, choose h = point.y
Separate the points into groups with point.y <= h and point.y > h.
Find the minimum and maximum X and Y coordinates of both subsets of points.
Compute the sum of the areas of the two rectangles.
Remember the minimum area obtained from the above and the corresponding h.
Repeat, but using w and X coordinates.
Determine whether minimum area was obtained for a vertical or horizontal split
Return the corresponding rectangles as the answer
Can we do even better? This is O(n^2) and not O(n) because for each choice of h and w we need to then find the minimum and maximum coordinates of each subgroup. This assumes a linear scan through both subgroups. We don't actually need to do this for the min and max X/Y coordinates when scanning horizontally/vertically, since those will be known. What we need is a solution to this problem:
Given n points and a value h, find the maximum X coordinate of any point whose Y coordinate is no greater than h.
The obvious solution I give above is O(n^2), but you might be able to find an O(n log n) solution by clever application of sorting or maybe even an O(n) solution by some even more clever method. I will not attempt this.
Our solution is O(n^2); the theoretically optimal solution is Omega(n) since you must at least look at all the points. So we're pretty close but there is room for improvement.
I have a problem in which I have to test whether the union of given set of rectangles forms
a rectangle or not. I don't have much experience solving computational geometry problems.
What my approach to the problem was that since I know the coordinates of all the rectangles, I can easily sort the points and then deduce the corner points of the largest rectangle possible. Then I could sweep a line and see if all the points on the line falls inside the rectangle. But, this approach is flawed and this would fail because the union may be in the form of a 'U'.
I would be a great help if you could push me in the right direction.
Your own version does not take into account that the edges of the rectangles can be non-parallel to each other. Therefore, there might not be "largest rectangle possible".
I would try this general approach:
1) Find the convex hull. You can find convex hull calculation algorithms here http://en.wikipedia.org/wiki/Convex_hull_algorithms.
2) Check if the convex hull is a rectangle. You can do this by looping through all the points on convex hull and checking if they all form 180 or 90 degree angles. If they do not, union is not a rectangle.
3) Go through all points on the convex hull. For each point check if the middle point between ThisPoint and NextPoint lies on the edge of any initially given rectangle.
If every middle point does, union is a rectangle.
If it does not, union is not a rectangle.
Complexity would be O(n log h) for finding convex hull, O(h) for the second part and O(h*n) for third part, where h is number of points on the convex hull.
Edit:
If the goal is to check if the resulting object is a filled rectangle, not only edges and corners rectangle then add step (4).
4) Find all line segments that are formed by intersecting or touching rectangles. Note - by definition all of these line segments are segments of edges of given rectangles. If a rectangle does not touch/intersect other rectangles, the line segments are it's edges.
For each line segment check if it's middle point is
On the edge of the convex hull
Inside one of given rectangles
On the edge of two non-overlapping given rectangles.
If at least one of these is true for every line segment, resulting object is a filled rectangle.
You could deduce the he corner points of the largest rectangle possible, and then go over all the rectangle that share the border with the largest possible rectangle, for example the bottom, and make sure that the line is entirely contained in their borders. This will also fail if an empty space in the middle of the rectangle is a problem, however. I think the complexity will be O(n2).
I think you are on the right direction. After you get the coordinates of largest possible rectangle,
If the largest possible rectangle is a valid rectangle, then each side of it must be union of sides of original rectangles. You can scan the original rectangle set, find those rectangles that is a part of the largest side we are looking for (this can be done in O(n) by checking if X==largestRectangle.Top.X if you are looking at top side, etc.), lets call them S.
For each side s in S we can create an interval [from,to]. All we need to check is whether the union of all intervals matches the side of the largest Rectangle. This can be done in O(nlog(n)) by standard algorithms, or on average O(n) by some hash trick (see http://www.careercup.com/question?id=12523672 , see my last comment (of the last comment) there for the O(n) algorithm ).
For example, say we got two 1*1 rectangles in the first quadrant, there left bottom coordinates are (0,0) and (1,0). Largest rectangle is 2*1 with left bottom coordinate (0,0). Since [0,1] Union [1,2] is [0,2], top side and bottom side match the largest rectangle, similar for left and right side.
Now suppose we got an U shape. 3*1 at (0,0), 1*1 at (0,1), 1*1 at (2,1), we got largest rectangle 3*2 at (0,0). Since for the top side we got [0,1] Union [1,3] does not match [0,3], the algorithm will output the union of above rectangles is not a rectangle.
So you can do this in O(n) on average, or O(nlog(n)) at least if you don't want to mess with some complex hash bucket algorithm. Much better than O(n^4)!
Edit: We have a small problem if there exists empty space somewhere in the middle of all rectangles. Let me think about it....
Edit2: An easy way to detect empty space is for each corner of a rectangle which is not a point on the largest rectangle, we go outward a little bit for all four directions (diagonal) and check if we are still in any rectangle. This is O(n^2). (Which ruins my beautiful O(nlog(n))! Can anyone can come up a better idea?
I haven't looked at a similar problem in the past, so there maybe far more efficient ways of doing it. The key problem is that you cannot look at containment of one rectangle in another in isolation since they could be adjacent but still form a rectangle, or one rectangle could be contained within multiple.
You can't just look at the projection of each rectangle on to the edges of the bounding rectangle unless the problem allows you to leave holes in the middle of the rectangle, although that is probably a fast initial check that could be performed before the following exhaustive approach:
Running through the list once, calculating the minimum and maximum x and y coordinates and the area of each rectangle
Create an input list containing your input rectangles ordered by descending size.
Create a work list containing the bounding rectangle initially
While there are rectangles in the work list
Take the largest rectangle in the input list R
Create an empty list for fragments
for each rectangle r in the work list, intersect r with R, splitting r into a rectangular portion contained within R (if any) and zero or more rectangles not within R. If r was split, discard the portion contained within R and add the remaining rectangles to the fragment list.
add the contents of the fragment list to the work list
Assuming your rectangles are aligned to the coordinate axis:
Given two rectangles A, B, you can make a function that subtracts B from A returning a set of sub-rectangles of A (that may be the empty set): Set = subtract_rectangle(A, B)
Then, given a set of rectangles R for which you want to know if their union is a rectangle:
Calculate a maximum rectangle Big that covers all the rectangles as ((min_x,min_y)-(max_x,max_y))
make the set S contain the rectangle Big: S = (Big)
for every rectangle B in R:
S1 = ()
for evey rectangle A in S:
S1 = S1 + subtract_rectangle(A, B)
S = S1
if S is empty then the union of the rectangles is a rectangle.
End, S contains the parts of Big not covered by any rectangle from R
If the rectangles are not aligned to the coordinate axis you can use a similar algorithm but that employs triangles instead of rectangles. The only issues are that subtracting triangles is not so simple to implement and that handling numerical errors can be difficult.
A simple approach just came to mind: If two rectangles share an edge[1], then together they form a rectangle which contains both - either the rectangles are adjacent [][ ] or one contains the other [[] ].
So if the list of rectangles forms a larger rectangle, then all you need it to repeatedly iterate over the rectangles, and "unify" pairs of them into a single larger one. If in one iteration you can unify none, then it is not possible to create any larger rectangle than you already have, with those pieces; otherwise, you will keep "unifying" rectangles until a single is left.
[1] Share, as in they have the same edge; it is not enough for one of them to have an edge included in one of the other's edges.
efficiency
Since efficiency seems to be a problem, you could probably speed it up by creating two indexes of rectangles, one with the larger edge size and another with the smaller edge size.
Then compare the edges with the same size, and if they are the same unify the two rectangles, remove them from the indexes and add the new rectangle to the indexes.
You can probably speed it up by not moving to the next iteration when you unify something, but to proceed to the end of the indexes before reiterating. (Stopping when one iteration does no unifications, or there is only one rectangle left.)
Additionally, the edges of a rectangle resulting from unification are by analysis always equal or larger than the edges of the original rectangles.
So if the indexes are ordered by ascending edge size, the new rectangle will be inserted in either the same position as you are checking or in positions yet to be checked, so each unification will not require an extra iteration cycle. (As the new rectangle will assuredly not unify with any rectangle previously checked in this iteration, since its edges are larger than all edges checked.)
For this to hold, in each step of a particular iteration you need to attempt unification on the next smaller edge from either of the indexes:
If you're in index1=3 and index2=6, you check index1 and advance that index;
If next edge on that index is 5, next iteration step will be in index1=5 and index2=6, so it will check index1 and advance that index;
If next edge on that index is 7, next iteration step will be in index1=7 and index2=6, so it will check index2 and advance that index;
If next edge on that index is 10, next iteration step will be in index1=7 and index2=10, so it will check index1 and advance that index;
etc.
examples
[A ][B ]
[C ][D ]
A can be unified with B, C with D, and then AB with CD. One left, ABCD, thus possible.
[A ][B ]
[C ][D ]
A can be unified with B, C with D, but AB cannot be unified with CD. 2 left, AB and CD, thus not possible.
[A ][B ]
[C ][D [E]]
A can be unified with B, C with D, CD with E, CDE with AB. 1 left, ABCDE, thus possible.
[A ][B ]
[C ][D ][E]
A can be unified with B, C with D, CD with AB, but not E. 2 left, ABCD and E, thus not possible.
pitfall
If a rectangle is contained in another but does not share a border, this approach will not unify them.
A way to address this is, when one hits an iteration that does not unify anything and before concluding that it is not possible to unify the set of rectangles, to get the rectangle with the widest edge and discard from the indexes all others that are contained within this largest rectangle.
This still does not address two situations.
First, consider the situation where with this map:
A B C D
E F G H
we have rectangles ACGE and BDFH. These rectangles share no edge and are not contained, but form a larger rectangle.
Second, consider the situation where with this map:
A B C D
E F G H
I J K L
we have rectangles ABIJ, CDHG and EHLI. They do not share edges, are not contained within each-other, and no two of them can be unified into a single rectangle; but form a rectangle, in total.
With these pitfalls this method is not complete. But it can be used to greatly reduce the complexity of the problem and reduce the number of rectangles to analyse.
Maybe...
Gather up all the x-coordinates in a list, and sort them. From this list, create a sequence of adjacent intervals. Do the same thing for the y-coordinates. Now you've got two lists of intervals. For each pair of intervals (A=[x1,x2] from the x-list, B=[y1,y2] from the y-list), make their product rectangle A x B = (x1,y1)-(x2,y2)
If every single product rectangle is contained in at least one of your initial rectangles, then the union must be a rectangle.
Making this efficient (I think I've offered about an O(n4) algorithm) is a different question entirely.
As jva stated, "Your own version does not take into account that the edges of the rectangles can be non-parallel to each other." This answer also assumes "parallel" rectangles.
If you have a grid as opposed to needing infinite precision, depending on the number and sizes of the rectangles and the granularity of the grid, it might be feasible to brute-force it.
Just take your "largest rectangle possible" and test all its points to see whether each point is in at least one of the smaller rectangles.
I finally was able to find the impressive javascript project (thanks to github search :) !)
https://github.com/evanw/csg.js
Also have a look into my answer here with other interesting projects
General case, thinking in images:
| outer_rect - union(inner rectangles) |
Check that result is zero
I have an image of which this is a small cut-out:
As you can see it are white pixels on a black background. We can draw imaginary lines between these pixels (or better, points). With these lines we can enclose areas.
How can I find the largest convex black area in this image that doesn't contain a white pixel in it?
Here is a small hand-drawn example of what I mean by the largest convex black area:
P.S.: The image is not noise, it represents the primes below 10000000 ordered horizontally.
Trying to find maximum convex area is a difficult task to do. Wouldn't you just be fine with finding rectangles with maximum area? This problem is much easier and can be solved in O(n) - linear time in number of pixels. The algorithm follows.
Say you want to find largest rectangle of free (white) pixels (Sorry, I have images with different colors - white is equivalent to your black, grey is equivalent to your white).
You can do this very efficiently by two pass linear O(n) time algorithm (n being number of pixels):
1) in a first pass, go by columns, from bottom to top, and for each pixel, denote the number of consecutive pixels available up to this one:
repeat, until:
2) in a second pass, go by rows, read current_number. For each number k keep track of the sums of consecutive numbers that were >= k (i.e. potential rectangles of height k). Close the sums (potential rectangles) for k > current_number and look if the sum (~ rectangle area) is greater than the current maximum - if yes, update the maximum. At the end of each line, close all opened potential rectangles (for all k).
This way you will obtain all maximum rectangles. It is not the same as maximum convex area of course, but probably would give you some hints (some heuristics) on where to look for maximum convex areas.
I'll sketch a correct, poly-time algorithm. Undoubtedly there are data-structural improvements to be made, but I believe that a better understanding of this problem in particular will be required to search very large datasets (or, perhaps, an ad-hoc upper bound on the dimensions of the box containing the polygon).
The main loop consists of guessing the lowest point p in the largest convex polygon (breaking ties in favor of the leftmost point) and then computing the largest convex polygon that can be with p and points q such that (q.y > p.y) || (q.y == p.y && q.x > p.x).
The dynamic program relies on the same geometric facts as Graham's scan. Assume without loss of generality that p = (0, 0) and sort the points q in order of the counterclockwise angle they make with the x-axis (compare two points by considering the sign of their dot product). Let the points in sorted order be q1, …, qn. Let q0 = p. For each 0 ≤ i < j ≤ n, we're going to compute the largest convex polygon on points q0, a subset of q1, …, qi - 1, qi, and qj.
The base cases where i = 0 are easy, since the only “polygon” is the zero-area segment q0qj. Inductively, to compute the (i, j) entry, we're going to try, for all 0 ≤ k ≤ i, extending the (k, i) polygon with (i, j). When can we do this? In the first place, the triangle q0qiqj must not contain other points. The other condition is that the angle qkqiqj had better not be a right turn (once again, check the sign of the appropriate dot product).
At the end, return the largest polygon found. Why does this work? It's not hard to prove that convex polygons have the optimal substructure required by the dynamic program and that the program considers exactly those polygons satisfying Graham's characterization of convexity.
You could try treating the pixels as vertices and performing Delaunay triangulation of the pointset. Then you would need to find the largest set of connected triangles that does not create a concave shape and does not have any internal vertices.
If I understand your problem correctly, it's an instance of Connected Component Labeling. You can start for example at: http://en.wikipedia.org/wiki/Connected-component_labeling
I thought of an approach to solve this problem:
Out of the set of all points generate all possible 3-point-subsets. This is a set of all the triangles in your space. From this set remove all triangles that contain another point and you obtain the set of all empty triangles.
For each of the empty triangles you would then grow it to its maximum size. That is, for every point outside the rectangle you would insert it between the two closest points of the polygon and check if there are points within this new triangle. If not, you will remember that point and the area it adds. For every new point you want to add that one that maximizes the added area. When no more point can be added the maximum convex polygon has been constructed. Record the area for each polygon and remember the one with the largest area.
Crucial to the performance of this algorithm is your ability to determine a) whether a point lies within a triangle and b) whether the polygon remains convex after adding a certain point.
I think you can reduce b) to be a problem of a) and then you only need to find the most efficient method to determine whether a point is within a triangle. The reduction of the search space can be achieved as follows: Take a triangle and increase all edges to infinite length in both directions. This separates the area outside the triangle into 6 subregions. Good for us is that only 3 of those subregions can contain points that would adhere to the convexity constraint. Thus for each point that you test you need to determine if its in a convex-expanding subregion, which again is the question of whether it's in a certain triangle.
The whole polygon as it evolves and approaches the shape of a circle will have smaller and smaller regions that still allow convex expansion. A point once in a concave region will not become part of the convex-expanding region again so you can quickly reduce the number of points you'll have to consider for expansion. Additionally while testing points for expansion you can further cut down the list of possible points. If a point is tested false, then it is in the concave subregion of another point and thus all other points in the concave subregion of the tested points need not be considered as they're also in the concave subregion of the inner point. You should be able to cut down to a list of possible points very quickly.
Still you need to do this for every empty triangle of course.
Unfortunately I can't guarantee that by adding always the maximum new region your polygon becomes the maximum polygon possible.
I'm looking for an algorithm to solve this problem:
Given N rectangles on the Cartesian coordinate, find out if the intersection of those rectangles is empty or not. Each rectangle can lie in any direction (not necessary to have its edges parallel to Ox and Oy)
Do you have any suggestion to solve this problem? :) I can think of testing the intersection of each rectangle pair. However, it's O(N*N) and quite slow :(
Abstract
Either use a sorting algorithm according to smallest X value of the rectangle, or store your rectangles in an R-tree and search it.
Straight-forward approach (with sorting)
Let us denote low_x() - the smallest (leftmost) X value of a rectangle, and high_x() - the highest (rightmost) X value of a rectangle.
Algorithm:
Sort the rectangles according to low_x(). # O(n log n)
For each rectangle in sorted array: # O(n)
Finds its highest X point. # O(1)
Compare it with all rectangles whose low_x() is smaller # O(log n)
than this.high(x)
Complexity analysis
This should work on O(n log n) on uniformly distributed rectangles.
The worst case would be O(n^2), for example when the rectangles don't overlap but are one above another. In this case, generalize the algorithm to have low_y() and high_y() too.
Data-structure approach: R-Trees
R-trees (a spatial generalization of B-trees) are one of the best ways to store geospatial data, and can be useful in this problem. Simply store your rectangles in an R-tree, and you can spot intersections with a straightforward O(n log n) complexity. (n searches, log n time for each).
Observation 1: given a polygon A and a rectangle B, the intersection A ∩ B can be computed by 4 intersection with half-planes corresponding to each edge of B.
Observation 2: cutting a half plane from a convex polygon gives you a convex polygon. The first rectangle is a convex polygon. This operation increases the number of vertices at most per 1.
Observation 3: the signed distance of the vertices of a convex polygon to a straight line is a unimodal function.
Here is a sketch of the algorithm:
Maintain the current partial intersection D in a balanced binary tree in a CCW order.
When cutting a half-plane defined by a line L, find the two edges in D that intersect L. This can be done in logarithmic time through some clever binary or ternary search exploiting the unimodality of the signed distance to L. (This is the part I don't exactly remember.) Remove all the vertices on the one side of L from D, and insert the intersection points to D.
Repeat for all edges L of all rectangles.
This seems like a good application of Klee's measure. Basically, if you read http://en.wikipedia.org/wiki/Klee%27s_measure_problem there are lower bounds on the runtime of the best algorithms that can be found for rectilinear intersections at O(n log n).
I think you should use something like the sweep line algorithm: finding intersections is one of its applications. Also, have a look at answers to this questions
Since the rectangles must not be parallel to the axis, it is easier to transform the problem to an already solved one: compute the intersections of the borders of the rectangles.
build a set S which contains all borders, together with the rectangle they're belonging to; you get a set of tuples of the form ((x_start,y_start), (x_end,y_end), r_n), where r_n is of course the ID of the corresponding rectangle
now use a sweep line algorithm to find the intersections of those lines
The sweep line stops at every x-coordinate in S, i.e. all start values and all end values. For every new start coordinate, put the corresponding line in a temporary set I. For each new end-coordinate, remove the corresponding line from I.
Additionally to adding new lines to I, you can check for each new line whether it intersects with one of the lines currently in I. If they do, the corresponding rectangles do, too.
You can find a detailed explanation of this algorithm here.
The runtime is O(n*log(n) + c*log(n)), where c is the number of intersection points of the lines in I.
Pick the smallest rectangle from the set (or any rectangle), and go over each point within it. If one of it's point also exists in all other rectangles, the intersection is not empty. If all points are free from ALL other rectangles, the intersection is empty.