Neighbours of a cell in the borders of a matrix - matrix

I'm facing some issues to find the neighbours in a matrix. I'm trying not to put a lot of if statements in the code because I'm pretty sure there's a better way to do it but I don't know exactly how.
To simplify, let's say we have the following matrix:
1 2 3 4 5
6 7 8 9 6
1 2 3 4 5
2 3 4 6 7
Considering the cell [2,2] = 3, the neighbours would be (i,j-1),(i-1,j),(i+1,j),(i,j+1),(i+1,j+1),(i-1,j-1). I created a "mask" for it using a for-loop like this, where inicio[0] is the i-coordinate of my current element (2 in the example) and inicio[1] is the j-coordinate (also 2 for element 3). Also, I'm considering the element must be in the center of the mask.
for(k=inicio[0]-1;k<inicio[0]+1;k++){
for(z=inicio[1]-1;z<inicio[1]+1;z++)
if(k!=0 || z!=0) //jump the current cell
However, I don't know how to treat the elements in the borders. If I want to find the neighbours of element [0,0] = 1 for example, considering the element must be in the middle of the mask like this:
x x x
x 1 2
x 6 7
How can I treat those X elements? I thought of initializing the borders on zero but I'm thinking this is not the proper way to do it. So if anyone can explain a better way to do it or an algorithm, I will be glad.

Related

Assignment regarding, dynamic programming. Making my code more efficient?

I've got an assignment regarding dynamic programming.
I'm to design an efficient algorithm that does the following:
There is a path, covered in spots. The user can move forward to the end of the path using a series of push buttons. There are 3 buttons. One moves you forward 2 spots, one moves you forward 3 spots, one moves you forward 5 spots. The spots on the path are either black or white, and you cannot land on a black spot. The algorithm finds the smallest number of button pushes needed to reach the end (past the last spot, can overshoot it).
The user inputs are for "n", the number of spots. And fill the array with n amount of B or W (Black or white). The first spot must be white. Heres what I have so far (Its only meant to be pseudo):
int x = 0
int totalsteps = 0
n = user input
int countAtIndex[n-1] <- Set all values to -1 // I'll do the nitty gritty stuff like this after
int spots[n-1] = user input
pressButton(totalSteps, x) {
if(countAtIndex[x] != -1 AND totalsteps >= countAtIndex[x]) {
FAILED } //Test to see if the value has already been modified (not -1 or not better)
else
if (spots[x] = "B") {
countAtIndex[x] = -2 // Indicator of invalid spot
FAILED }
else if (x >= n-5) { // Reached within 5 of the end, press 5 so take a step and win
GIVE VALUE OF TOTALSTEPS + 1 A SUCCESSFUL SHORTEST OUTPUT
FINISH }
else
countAtIndex[x] = totalsteps
pressButton(totalsteps + 1, x+5) //take 5 steps
pressButton(totalsteps + 1, x+3) //take 3 steps
pressButton(totalsteps + 1, x+2) //take 2 steps
}
I appreciate this may look quite bad but I hope it comes across okay, I just want to make sure the theory is sound before I write it out better. I'm wondering if this is not the most efficient way of doing this problem. In addition to this, where there are capitals, I'm unsure on how to "Fail" the program, or how to return the "Successful" value.
Any help would be greatly appreciated.
I should add incase its unclear, I'm using countAtIndex[] to store the number of moves to get to that index in the path. I.e at position 3 (countAtIndex[2]) could have a value 1, meaning its taken 1 move to get there.
I'm converting my comment into an answer since this will be too long for a comment.
There are always two ways to solve a dynamic programming problem: top-down with memoization, or bottom-up by systematically filling an output array. My intuition says that the implementation of the bottom-up approach will be simpler. And my intent with this answer is to provide an example of that approach. I'll leave it as an exercise for the reader to write the formal algorithm, and then implement the algorithm.
So, as an example, let's say that the first 11 elements of the input array are:
index: 0 1 2 3 4 5 6 7 8 9 10 ...
spot: W B W B W W W B B W B ...
To solve the problem, we create an output array (aka the DP table), to hold the information we know about the problem. Initially all values in the output array are set to infinity, except for the first element which is set to 0. So the output array looks like this:
index: 0 1 2 3 4 5 6 7 8 9 10 ...
spot: W B W B W W W B B W B
output: 0 - x - x x x - - x -
where - is a black space (not allowed), and x is being used as the symbol for infinity (a spot that's either unreachable, or hasn't been reached yet).
Then we iterate from the beginning of the table, updating entries as we go.
From index 0, we can reach 2 and 5 with one move. We can't move to 3 because that spot is black. So the updated output array looks like this:
index: 0 1 2 3 4 5 6 7 8 9 10 ...
spot: W B W B W W W B B W B
output: 0 - 1 - x 1 x - - x -
Next, we skip index 1 because the spot is black. So we move on to index 2. From 2, we can reach 4,5, and 7. Index 4 hasn't been reached yet, but now can be reached in two moves. The jump from 2 to 5 would reach 5 in two moves. But 5 can already be reached in one move, so we won't change it (this is where the recurrence relation comes in). We can't move to 7 because it's black. So after processing index 2, the output array looks like this:
index: 0 1 2 3 4 5 6 7 8 9 10 ...
spot: W B W B W W W B B W B
output: 0 - 1 - 2 1 x - - x -
After skipping index 3 (black) and processing index 4 (can reach 6 and 9), we have:
index: 0 1 2 3 4 5 6 7 8 9 10 ...
spot: W B W B W W W B B W B
output: 0 - 1 - 2 1 3 - - 3 -
Processing index 5 won't change anything because 7,8,10 are all black. Index 6 doesn't change anything because 8 is black, 9 can already be reached in three moves, and we aren't showing index 11. Indexes 7 and 8 are skipped because they're black. And all jumps from 9 are into parts of the array that aren't shown.
So if the goal was to reach index 11, the number of moves would be 4, and the possible paths would be 2,4,6,11 or 2,4,9,11. Or if the array continued, we would simply keep iterating through the array, and then check the last five elements of the array to see which has the smallest number of moves.

Convert diamond matrix 2d coordinates to 1d index and back

I have a 2d game board that expands as tiles are added to the board. Tiles can only be adjacent to existing tiles in the up, down, left and right positions.
So I thought a diamond spiral matrix would be the most efficient way to store the board, but I cannot find a way to convert the x,y coordinates to a 1d array index or the reverse operation.
like this layout
X -3 -2 -1 0 1 2 3
Y 3 13
2 24 5 14
1 23 12 1 6 15
0 22 11 4 0 2 7 16
-1 21 10 3 8 17
-2 20 9 18
-3 19
Tile 1 will always be at position 0, tile 2 will be at 1,2,3 or 4, tile 3 somewhere from 1 to 12 etc.
So I need an algorithm that goes from X,Y to an index and from an index back to the original X and Y.
Anyone know how to do this, or recommend another space filling algorithm that suits my needs. I'm probably going to use Java but would prefer something language neutral.
Thanks
As I can understand form the problem statement, there is no guarantee that the tiles will be filled evenly on the sides. for example:
X -3 -2 -1 0 1 2 3
Y 3 6
2 3 4 5
1 1
0 0 2
-1
So, I think a diamond matrix won't be the best choice.
I would suggest storing them in a hash-map, like implementing a dictionary for 2 letter words.
Also, You need to be more specific to what your requirements are. Like, do you prioritize space complexity over time? Or do you want a fast access time and don't care about memory usage that much.
IMPORTANT :
Also, what is the
Max number of tiles that we have to hold
Max width and height of the board.

Transform Matrix A to B through swapping elements

Well, I got this homework where i must find the minimum number of swaps to convert some matrix A to other matrix B given, the constraints are very limited ("may not exceed 10 elements on the matrix and the matrix will also be N=M"), that means that it will be always a 1x1 matrix and a 2x2 matrix, (which is trivial), the problem is at the 3x3 matrix.
I already tried to backtrack the elements by seeking the manhattan distance between two elements on the matrix that are separated, multiply by two and substract - 1, e.g.
The rules of swapping are: You may swap elements that are adjacent, we define adjacent when they share the same row or the same column.
1 3 2
6 5 4
7 8 9
target:
1 2 3
4 5 6
7 8 9
The manhattan distance between {1,3} is 1, so 2*1 - 1 = 1, 1 swap needed.
for {6,4} is 2, so 2*2 - 1 = 3, 3 swaps needed, then, the final answer is 4 swaps needed.
However, my program is getting rejected by the automatic corrector, any ideas on how to solve this problem?

Ascending Cardinal Numbers in APL

In the FinnAPL Idiom Library, the 19th item is described as “Ascending cardinal numbers (ranking, all different) ,” and the code is as follows:
⍋⍋X
I also found a book review of the same library by R. Peschi, in which he said, “'Ascending cardinal numbers (ranking, all different)' How many of us understand why grading the result of Grade Up has that effect?” That's my question too. I searched extensively on the internet and came up with zilch.
Ascending Cardinal Numbers
For the sake of shorthand, I'll call that little code snippet “rank.” It becomes evident what is happening with rank when you start applying it to binary numbers. For example:
X←0 0 1 0 1
⍋⍋X ⍝ output is 1 2 4 3 5
The output indicates the position of the values after sorting. You can see from the output that the two 1s will end up in the last two slots, 4 and 5, and the 0s will end up at positions 1, 2 and 3. Thus, it is assigning rank to each value of the vector. Compare that to grade up:
X←7 8 9 6
⍋X ⍝ output is 4 1 2 3
⍋⍋X ⍝ output is 2 3 4 1
You can think of grade up as this position gets that number and, you can think of rank as this number gets that position:
7 8 9 6 ⍝ values of X
4 1 2 3 ⍝ position 1 gets the number at 4 (6)
⍝ position 2 gets the number at 1 (7) etc.
2 3 4 1 ⍝ 1st number (7) gets the position 2
⍝ 2nd number (8) gets the position 3 etc.
It's interesting to note that grade up and rank are like two sides of the same coin in that you can alternate between the two. In other words, we have the following identities:
⍋X = ⍋⍋⍋X = ⍋⍋⍋⍋⍋X = ...
⍋⍋X = ⍋⍋⍋⍋X = ⍋⍋⍋⍋⍋⍋X = ...
Why?
So far that doesn't really answer Mr Peschi's question as to why it has this effect. If you think in terms of key-value pairs, the answer lies in the fact that the original keys are a set of ascending cardinal numbers: 1 2 3 4. After applying grade up, a new vector is created, whose values are the original keys rearranged as they would be after a sort: 4 1 2 3. Applying grade up a second time is about restoring the original keys to a sequence of ascending cardinal numbers again. However, the values of this third vector aren't the ascending cardinal numbers themselves. Rather they correspond to the keys of the second vector.
It's kind of hard to understand since it's a reference to a reference, but the values of the third vector are referencing the orginal set of numbers as they occurred in their original positions:
7 8 9 6
2 3 4 1
In the example, 2 is referencing 7 from 7's original position. Since the value 2 also corresponds to the key of the second vector, which in turn is the second position, the final message is that after the sort, 7 will be in position 2. 8 will be in position 3, 9 in 4 and 6 in the 1st position.
Ranking and Shareable
In the FinnAPL Idiom Library, the 2nd item is described as “Ascending cardinal numbers (ranking, shareable) ,” and the code is as follows:
⌊.5×(⍋⍋X)+⌽⍋⍋⌽X
The output of this code is the same as its brother, ascending cardinal numbers (ranking, all different) as long as all the values of the input vector are different. However, the shareable version doesn't assign new values for those that are equal:
X←0 0 1 0 1
⌊.5×(⍋⍋X)+⌽⍋⍋⌽X ⍝ output is 2 2 4 2 4
The values of the output should generally be interpreted as relative, i.e. The 2s have a relatively lower rank than the 4s, so they will appear first in the array.

Minimize maximum absolute difference in pairs of numbers

The problem statement:
Give n variables and k pairs. The variables can be distinct by assigning a value from 1 to n to each variable. Each pair p contain 2 variables and let the absolute difference between 2 variables in p is abs(p). Define the upper bound of difference is U=max(Abs(p)|every p).
Find an assignment that minimize U.
Limit:
n<=100
k<=1000
Each variable appear at least 2 times in list of pairs.
A problem instance:
Input
n=9, k=12
1 2 (meaning pair x1 x2)
1 3
1 4
1 5
2 3
2 6
3 5
3 7
3 8
3 9
6 9
8 9
Output:
1 2 5 4 3 6 7 8 9
(meaning x1=1,x2=2,x3=5,...)
Explaination: An assignment of x1=1,x2=2,x3=3,... will result in U=6 (3 9 has greastest abs value). The output assignment will get U=4, the minimum value (changed pair: 3 7 => 5 7, 3 8 => 5 8, etc. and 3 5 isn't changed. In this case, abs(p)<=4 for every pair).
There is an important point: To achieve the best assignments, the variables in the pairs that have greatest abs must be change.
Base on this, I have thought of a greedy algorithm:
1)Assign every x to default assignment (x(i)=i)
2)Locate pairs that have largest abs and x(i)'s contained in them.
3)For every i,j: Calculate U. Swap value of x(i),x(j). Calculate U'. If U'<U, stop and repeat step 3. If U'>=U for every i,j, end and output the assignment.
However, this method has a major pitfall, if we need an assignment like this:
x(a)<<x(b), x(b)<<x(c), x(c)<<x(a)
, we have to swap in 2 steps, like: x(a)<=>x(b), then x(b)<=>x(c), then there is a possibility that x(b)<<x(a) in first step has its abs become larger than U and the swap failed.
Is there any efficient algorithm to solve this problem?
This looks like http://en.wikipedia.org/wiki/Graph_bandwidth (NP complete, even for special cases). It looks like people run http://en.wikipedia.org/wiki/Cuthill-McKee_algorithm when they need to do this to try and turn a sparse matrix into a banded diagonal matrix.

Resources