Related
In Prolog we can write very simple programs like this:
mammal(dog).
mammal(cat).
animal(X) :- mammal(X).
The last line uses the symbol :- which informally lets us read the final fact as: if X is a mammal then it is also an animal.
I am beginning to learn Prolog and trying to establish which of the following is meant by the symbol :-
Implies (⇒)
Entails (⊨)
Provable (⊢)
In addition, I am not clear on the difference between these three. I am trying to read threads like this one, but the discussion is at a level above my capability, https://math.stackexchange.com/questions/286077/implies-rightarrow-vs-entails-models-vs-provable-vdash.
My thinking:
Prolog works by pattern-matching symbols (unification and search) and so we might be tempted to say the symbol :- means 'syntactic entailment'. However this would only be true of queries that are proven to be true as a result of that syntactic process.
The symbol :- is used to create a database of facts, and therefore is semantic in nature. That means it could be one of Implies (⇒) or Entails (⊨) but I don't know which.
Neither. Or, rather if at all, then it's the implication. The other symbols are above, that is meta-language. The Mathematics Stack Exchange answers explain this quite nicely.
So why :- is not that much of an implication, consider:
p :- p.
In logic, both truth values make this a valid sentence. But in Prolog we stick to the minimal model. So p is false. Prolog uses a subset of predicate logic such that there actually is only one minimal model. And worse, Prolog's actual default execution strategy makes this an infinite loop.
Nevertheless, the most intuitive way to read LHS :- RHS. is to see it as a way to generate new knowledge. Provided RHS is true it follows that also LHS is true. This way one avoids all the paradoxa related to implication.
The direction right-to-left is a bit counter intuitive. This direction is motivated by Prolog's actual execution strategy (which goes left-to-right in this representation).
:- is usually read as if, so something like:
a :- b, c .
reads as
| a is true if b and c are true.
In formal logic, the above would be written as
| a ← b ∧ c
Or
| b and c imply a
Consider the language
Consider the language
Aabb = {< M > | M is a TM, and M accepts abb}
a) What is the computational problem that is represented by Aabb?
b) Show that Aabb is undecidable.
I tried proving it but didn't know what to do.
You can use Rice's theorem directly and correctly prove the claim by noting that some TMs accept aab, some don't, and acceptance of abb is a semantic property of languages (it has to do only with the strings accepted, not the manner of accepting them). Rice guarantees this language is undecidable.
If you want another kind of proof, consider the following. There's nothing special about the string abb. If this problem is decidable, we'd expect the problem to be decidable for any arbitrary string. If it were decidable for any arbitrary string, we could use dovetailing to decide whether the language of the TM were empty. If we could decide whether the language of a TM were empty, we could take any TM, change all instances of halt-reject to halt-accept, and then decide whether the TM halts on at least one input. Etc. Etc. Basically, you can construct a chain of implications as long as you want but you quickly find known undecidable problems you can reduce to.
L={w|w€{a,b}, number of a is divisible by 2 }is the language. Can someone help me with the regular grammer of this?
The language is the set of all strings of a and b with an even number of a. This is a regular language and the goal is to produce a regular grammar for it.
Unless the regular grammar you're going to need is trivial, I would recommend always writing down the finite automaton first, and then converting it into a grammar. Converting a finite automaton into a grammar is very easy, and solving this problem is easy with a finite automaton. We will have two states: one will correspond to having seen an even number of a, the other an odd number. The state corresponding to having seen an even number of a will be accepting, and seeing b will not cause us to change states. The DFA is therefore:
b b
/-\ /-\
| V | V
----->(q0)--a-->(q1)
^ |
| a |
\---------/
A regular grammar for this can be formed by writing the transitions down as productions, using the states as nonterminal symbols, and including an empty production for the accepting state:
(q0) -> b(q0) | a(q1) | e
(q1) -> b(q1) | a(q0)
For the sake of completeness, you could run some other algorithms on the grammar or automaton and get a regular expression, maybe like this: b*(ab*ab*)* (just wrote that down, not sure if it's right or not, left as an exercise).
I have a Relation f defined as f: A -> B × C. I would like to write a firsr-order formula to constrain this relation to be a bijective function from A to B × C?
To be more precise, I would like the first order counter part of the following formula (actually conjunction of the three):
∀a: A, ∃! bc : B × C, f(a)=bc -- f is function
∀a1,a2: A, f(a1)=f(a2) → a1=a2 -- f is injective
∀(b, c) : B × C, ∃ a : A, f(a)=bc -- f is surjective
As you see the above formulae are in Higher Order Logic as I quantified over the relations. What is the first-order logic equivalent of these formulae if it is ever possible?
PS:
This is more general (math) question, rather than being more specific to any theorem prover, but for getting help from these communities --as I think there are mature understanding of mathematics in these communities-- I put the theorem provers tag on this question.
(Update: Someone's unhappy with my answer, and SO gets me fired up in general, so I say what I want here, and will probably delete it later, I suppose.
I understand that SO is not a place for debates and soapboxes. On the other hand, the OP, qartal, whom I assume is the unhappy one, wants to apply the answer from math.stackexchange.com, where ZFC sets dominates, to a question here which is tagged, at this moment, with isabelle and logic.
First, notation is important, and sloppy notation can result in a question that's ambiguous to the point of being meaningless.
Second, having a B.S. in math, I have full appreciation for the logic of ZFC sets, so I have full appreciation for math.stackexchange.com.
I make the argument here that the answer given on math.stackexchange.com, linked to below, is wrong in the context of Isabelle/HOL. (First hmmm, me making claims under ill-defined circumstances can be annoying to people.)
If I'm wrong, and someone teaches me something, the situation here will be redeemed.
The answerer says this:
First of all in logic B x C is just another set.
There's not just one logic. My immediate reaction when I see the symbol x is to think of a type, not a set. Consider this, which kind of looks like your f: A -> BxC:
definition foo :: "nat => int × real" where "foo x = (x,x)"
I guess I should be prolific in going back and forth between sets and types, and reading minds, but I did learn something by entering this term:
term "B × C" (* shows it's of type "('a × 'b) set" *)
Feeling paranoid, I did this to see if had fallen into a major gotcha:
term "f : A -> B × C"
It gives a syntax error. Here I am, getting all pedantic, and our discussion is ill-defined because the notation is ill-defined.
The crux: the formula in the other answer is not first-order in this context
(Another hmmm, after writing what I say below, I'm full circle. Saying things about stuff when the context of the stuff is ill-defined.)
Context is everything. The context of the other site is generally ZFC sets. Here, it's HOL. That answerer says to assume these for his formula, wich I give below:
Ax is true iff x∈A
Bx is true iff x∈B×C
Rxy is true iff f(x)=y
Syntax. No one has defined it here, but the tag here is isabelle, so I take it to mean that I can substitute the left-hand side of the iff for the right-hand side.
Also, the expression x ∈ A is what would be in the formula in a typical set theory textbook, not Rxy. Therefore, for the answerer's formula to have meaning, I can rightfully insert f(x) = y into it.
This then is why I did a lot of hedging in my first answer. The variable f cannot be in the formula. If it's in the formula, then it's a free variable which is implicitly quantified. Here's the formula in Isar syntax:
term "∀x. (Ax --> (∃y. By ∧ Rxy ∧ (∀z. (Bz ∧ Rxz) --> y = z)))"
Here it is with the substitutions:
∀x. (x∈A --> (∃y. y∈B×C ∧ f(x)=y ∧ (∀z. (z∈B×C ∧ f(x)=z) --> y = z)))
In HOL, f(x) = f x, and so f is implicitly, universally quantified. If this is the case, then it's not first-order.
Really, I should dig deep to recall what I was taught, that f(x)=y means:
(x,f(x)) = (x,y) which means we have to have (x,y)∈(A, B×C)
which finally gets me:
∀x. (x∈A -->
(∃y. y∈B×C ∧ (x,y)∈(A,B×C) ∧ (∀z. (z∈B×C ∧ (x,z)∈(A,B×C)) --> y = z)))
Finally, I guess it turns out that in the context of math.stackexchange.com, it's 100% on.
Am I the only one who feels compulsive about questioning what this means in the context of Isabelle/HOL? I don't accept that everything here is defined well enough to show that it's first order.
Really, qartal, your notation should be specific to a particular logic.
First answer
With Isabelle, I answer the question based on my interpretation of your
f: A -> B x C, which I take as a ZFC set, in particular a subset of the
Cartesian product A x (B x C)
You're sort of mixing notation from the two logics, that of ZFC
sets and that of HOL. Consequently, I might be off on what I think you're
asking.
You don't define your relation, so I keep things simple.
I define a simple ZFC function, and prove the first
part of your first condition, that f is a function. The second part would be
proving uniqueness. It can be seen that f satisfies that, so once a
formula for uniqueness is stated correctly, auto might easily prove it.
Please notice that the
theorem is a first-order formula. The characters ! and ? are ASCII
equivalents for \<forall> and \<exists>.
(Clarifications must abound when
working with HOL. It's first-order logic if the variables are atomic. In this
case, the type of variables are numeral. The basic concept is there. That
I'm wrong in some detail is highly likely.)
definition "A = {1,2}"
definition "B = A"
definition "C = A"
definition "f = {(1,(1,1)), (2,(1,1))}"
theorem
"!a. a \<in> A --> (? z. z \<in> (B × C) & (a,z) \<in> f)"
by(auto simp add: A_def B_def C_def f_def)
(To completely give you an example of what you asked for, I would have to redefine my function so its bijective. Little examples can take a ton of work.)
That's the basic idea, and the rest of proving that f is a function will
follow that basic pattern.
If there's a problem, it's that your f is a ZFC set function/relation, and
the logical infrastructure of Isabelle/HOL is set up for functions as a type.
Functions as ordered pairs, ZFC style, can be formalized in Isabelle/HOL, but
it hasn't been done in a reasonably complete way.
Generalizing it all is where the work would be. For a particular relation, as
I defined above, I can limit myself to first-order formulas, if I ignore that
the foundation, Isabelle/HOL, is, of course, higher-order logic.
I read the question asked in Herbrand universe, Herbrand Base and Herbrand Model of binary tree (prolog) and the answers given, but I have a slightly different question more like a confirmation and hopefully my confusion will be clarified.
Let P be a program such that we have the following facts and rule:
q(a, g(b)).
q(b, g(b)).
q(X, g(X)) :- q(X, g(g(g(X)))).
From the above program, the Herbrand Universe
Up = {a, b, g(a), g(b), q(a, g(a)), q(a, g(b)), q(b, g(a)), q(b, g(b)), g(g(a)), g(g(b))...e.t.c}
Herbrand base:
Bp = {q(s, t) | s, t E Up}
Now come to my question(forgive me for my ignorance), i included q(a, g(a)) as an element in my Herbrand Universe but from the fact, it states q(a, g(b)). Does that mean that q(a, g(a)) does not suppose to be there?
Also since the Herbrand models are subset of the Herbrand base, how do i determine the least Herbrand model by induction?
Note: I have done a lot of research on this, and some parts are well clear to me but still i have this doubt in me thats why i want to seek the communities opinion. Thank you.
From having the fact q(a,g(b)) you cannot conclude whether or not q(a,g(a)) is in the model. You will have to generate the model first.
For determining the model, start with the facts {q(a,g(b)), q(b,g(b))} and now try to apply your rules to extend it. In your case, however, there is no way to match the right-hand side of the rule q(X,g(X)) :- q(X,g(g(g(X)))). to above facts. Therefore, you are done.
Now imagine the rule
q(a,g(Y)) :- q(b,Y).
This rule could be used to extend our set. In fact, the instance
q(a,g(g(b))) :- q(b,g(b)).
is used: If q(b,g(b)) is present, conclude q(a,g(g(b))). Note that we are using here the rule right-to-left. So we obtain
{q(a,g(b)), q(b,g(b)), q(a,g(g(b)))}
thereby reaching a fixpoint.
Now take as another example you suggested the rule
q(X, g(g(g(X)))) :- q(X, g(X)).
Which permits (I will no longer show the instantiated rule) to generate in one step:
{q(a,g(b)), q(b,g(b)), q(a,g(g(g(b)))), q(b, g(g(g(b))))}
But this is not the end, since, again, the rule can be applied to produce even more! In fact, you have now an infinite model!
{g(a,gn+1(b)), g(b, gn+1(b))}
This right-to-left reading is often very helpful when you are trying to understand recursive rules in Prolog. The top-down reading (left-to-right) is often quite difficult, in particular, since you have to take into account backtracking and general unification.
Concerning your question:
"Also since the Herbrand models are subset of the Herbrand base, how do i determine the least Herbrand model by induction?"
If you have a set P of horn clauses, the definite program, then you can define
a program operator:
T_P(M) := { H S | S is ground substitution, (H :- B) in P and B S in M }
The least model is:
inf(P) := intersect { M | M |= P }
Please note that not all models of a definite program are fixpoints of the
program operator. For example the full herbrand model is always a model of
the program P, which shows that definite programs are always consistent, but
it is not necessarily a fixpoint.
On the other hand each fixpoint of the program operator is a model of the
definite program. Namely if you have T_P(M) = M, then one can conclude
M |= P. So that after some further mathematical reasoning(*) one finds that
the least fixpoint is also the least model:
lfp(T_P) = inf(P)
But we need some further considerations so that we can say that we can determine
the least model by a kind of computation. Namely one easily observes that the
program operator is contiguous, i.e. preserves infinite unions of chains, since
horn clauses do not have forall quantifiers in their body:
union_i T_P(M_i) = T_P(union_i M_i)
So that again after some further mathematical reasoning(*) one finds that we can
compute the least fixpoint via iteration, witch can be used for simple
induction. Every element of the least model has a simple derivation of finite
depth:
union_i T_P^i({}) = lpf(T_P)
Bye
(*)
Most likely you find further hints on the exact mathematical reasoning
needed in this book, but unfortunately I can't recall which sections
are relevant:
Foundations of Logic Programming, John Wylie Lloyd, 1984
http://www.amazon.de/Foundations-Programming-Computation-Artificial-Intelligence/dp/3642968287