I am currently working with a legacy system that consists of several services which (among others) communicate through some kind of Enterprise Service Bus (ESB) to synchronize data.
I would like to gradually work this system towards the direction of micro services architecture. I am planning to reduce the dependency on ESB and use more of message broker like RabbitMQ or Kafka. Due to some resource/existing technology limitation, I don't think I will be able to completely avoid data replication between services even though I should be able to clearly define a single service as the data owner.
What I am wondering now, how can I safely do a database backup restore for a single service when necessary? Doing so will cause the service to be out of sync with other services that hold the replicated data. Any experience/suggestion regarding this?
Have your primary database publish events every time a database mutation occurs, and let the replicated services subscribe to this event and apply the same mutation on their replicated data.
You already use a message broker, so you can leverage your existing stack for broadcasting the events. By having replication done through events, a restore being applied to the primary database will be propagated to all other services.
Depending on the scale of the backup, there will be a short period where the data on the other services will be stale. This might or might not be acceptable for your use case. Think of the staleness as some sort of eventual consistency model.
Related
I am working on Microservice architecture. One of my service is exposed to source system which is used to post the data. This microservice published the data to redis. I am using redis pub/sub. Which is further consumed by couple of microservices.
Now if the other microservice is down and not able to process the data from redis pub/sub than I have to retry with the published data when microservice comes up. Source can not push the data again. As source can not repush the data and manual intervention is not possible so I tohught of 3 approaches.
Additionally Using redis data for storing and retrieving.
Using database for storing before publishing. I have many source and target microservices which use redis pub/sub. Now If I use this approach everytime i have to insert the request in DB first than its response status. Now I have to use shared database, this approach itself adding couple of more exception handling cases and doesnt look very efficient to me.
Use kafka inplace if redis pub/sub. As traffic is low so I used Redis pub/sub and not feasible to change.
In both of the above cases, I have to use scheduler and I have a duration before which I have to retry else subsequent request will fail.
Is there any other way to handle above cases.
For the point 2,
- Store the data in DB.
- Create a daemon process which will process the data from the table.
- This Daemon process can be configured well as per our needs.
- Daemon process will poll the DB and publish the data, if any. Also, it will delete the data once published.
Not in micro service architecture, But I have seen this approach working efficiently while communicating 3rd party services.
At the very outset, as you mentioned, we do indeed seem to have only three possibilities
This is one of those situations where you want to get a handshake from the service after pushing and after processing. In order to accomplish the same, using a middleware queuing system would be a right shot.
Although a bit more complex to accomplish, what you can do is use Kafka for streaming this. Configuring producer and consumer groups properly can help you do the job smoothly.
Using a DB to store would be a overkill, considering the situation where you "this data is to be processed and to be persisted"
BUT, alternatively, storing data to Redis and reading it in a cron-job/scheduled job would make your job much simpler. Once the job is run successfully, you may remove the data from cache and thus save Redis Memory.
If you can comment further more on the architecture and the implementation, I can go ahead and update my answer accordingly. :)
We are working on an application that has a WebSocket connection to every client. For high availability and load balancing purposes, we would like to scale the receiving micro service. As the WebSocket connection is used to propagate the state of a client to every other client it is important to synchronize the current state of a client with all other instances of the receiving micro service. It is also important that the state has to be reset when a client disconnects.
To give you some specs:
We are using docker swarm
Its a NodeJS Backend and an Angular 9 Frontend
We have looked into multiple ideas, for example:
Redis Cache (The state would not be deleted if the instance fails.)
Queues/Topics (This would mean every instance has to keep track of the current state of all clients.)
WebSockets between instances (This looks promising but is not really scalable.)
What is the best practice to sync the state of a micro service between multiple instances while making sure that there are no inconsistencies? How are you solving this issue? Are we missing something obvious? Any tips and tricks?
We appreciate any suggestions.
This might not be 100% what you want to hear, but generally people advise that all microservices should be stateless.
An overall application, of course, has state, and databases, persistent event streams or key-value caches (e.g. Redis) are excellent ways of persisting this. Ideally this is bounded per service though, otherwise you risk end up writing a distributed monolith.
Hard to say in your particular case, but perhaps rethink how state is stored conceptually, and make that more explicit - determining what is cache (for performance) and what is genuine state that should be persisted externally (e.g. to Redis & a database), that allows many service instances to use instantly, thus making sure they can are truly disposable processes.
I have a REST service - all its requests are persisted to its own relational database. So far, good. But, there is also a small business functionality (email notification, sms alert) that should be run on the newly received/updated data. For this process to work on data in background, it requires some way to know about the persisted data - a message queue would fix the problem. Three common ways I see designing this,
The REST service inserts into the database, also, publish to the queue, too.
The problem here is, distributed transaction - combining different types within one transaction - relational database & the queue. Some tools may support, some may not.
As usual REST service persists only to its database. Additionally it also inserts the data into another table to which a scheduled job queries, publishes them to queue (from which the background job should start its work).
The problem I see is the scheduler - not reactive, batchprocessing, limited by the time slot, not realtime, slow and others.
The REST endpoint publishes the data directly to a topic. A consumer persists it to the database, whereas another process it in the background.
Something like eventsourcing. TMU, it is bit complex to implement as the number of services grow. Also, if the db is down, the persistent service would fail to save the data, however the background service (say, the emailer) would send email which is functionaly wrong. This may lead to inconsistency among the services, also functional.
I have also thought of reading database transaction-logs, but it seems more complex, requires tools to configurations to make it work, also, it seems right for data processing systems than for our use case.
What's your thought on this - did I miss anything? How do you manage such scenarios? What should be looked for? Thinking reactive, say Vertx?
Apologies if this looks very naive, but I have to ask.
I think best approach is 2 with a CDC(change data capture) system like debezium.
See [https://microservices.io/patterns/data/transactional-outbox.html][1]
I usually recommend option 3 if you don't need immediate read after write consistency. Background job should retry if the database record is still not updated by the message it processes.
Your post exemplifies why queues shouldn't be used for these types of scenarios. They are good for delivering analytical data or logs, but for task orchestration developers have to reinvent the wheel every time.
The much better approach is to use a task orchestration system like Cadence Workflow that eliminates issues you described and makes multi-service orchestration much simpler.
See this presentation that explains the Cadence programming model.
As I heard most of the time that in micro services architecture, for every single micro service we have to create individual database.
But if I have to maintain foreign key constraint across the different databases which is not possible. Like I have a user table in authentication micro service and I want to use it in my catalog service(userid column from user table)
So how can it be resolve.
Thanks in Advance
You can maintain a shadow copy (with only useful information for eg. just the userid column) of user table in catalog service via event sourcing(for e.g. you can use rabbit MQ or apache kafka for async messaging).
Catalog service will use the user information in read only mode. This solution is however effective only when user information doesn't change frequently. Otherwise async communication can be inefficient and costly.
In that case you can implement API calls from catalog service to user service for any validations to be done on user data.
Use the Saga Pattern to maintain data consistency across services.
A saga is a sequence of local transactions. Each local transaction
updates the database and publishes a message or event to trigger the
next local transaction in the saga. If a local transaction fails
because it violates a business rule then the saga executes a series of
compensating transactions that undo the changes that were made by the
preceding local transactions.
One question on vert.x event bus scalability. I am planning to use vert.x in smart device (small form facor) application and a remote management application. Initial estimate is that there will be close to 100K smart devices and 3/4 servers hosting management application. In this case, can you please advise using event bus between the smart device and web application (in cluster mode). My primary requirement of using event bus is to send dynamic notifications originated from device to the management servers and take corrective steps in case of system failure.
I posted another query recently and one of the users pointed me that internally vert.x uses the netsockets for event bus backed by hazelcast for cluster mode discovery. If that is the case, my assumption is that the scalability will be limited by the number of sockets that can be handled by the management server. Is this right ?
Also appreciate if anyone can point me to any benchmark test done on the vert.x eventbus in terms of msg processing performance.
My primary requirement of using event bus is to send dynamic notifications originated from device to the management servers and take corrective steps in case of system failure.
No, use regular HTTP requests for this. EventBus, and indeed every concurrent two-way networking model, is fundamentally unsuitable for this use case. Absolutely do not use Hazelcast on the clients; using a SockJS EventBus bridge is possible but so error-prone that you will certainly waste more time doing that correctly than writing a simple HTTP endpoint for this heartbeat behaviour.
my assumption is that the scalability will be limited by the number of sockets that can be handled by the management server. Is this right ?
No. Your scalability will be limited by however you'll be persisting the data you receive from the device. Hazelcast's maps are fine for this (accessed via vertx.sharedData()), but it really depends if you 100% understand what you want.