How to improve this Dynamic programming solution(Optimisation in algorithm) - algorithm

The Problem statement:
Assurance Company of Moving (ACM) is a company of moving things for people. Recently, some schools want to move their computers to another place. So they ask ACM to help them. One school reserves K trucks for moving, and it has N computers to move. In order not to waste the trucks, the school ask ACM to use all the trucks. That is to say, there must be some computers in each truck, and there are no empty trucks. ACM wants to know how many partition shemes exists with moving N computers by K trucks, the ACM ask you to compute the number of different shemes with given N and K. You needn't care with the order. For example N=7,K=3, the the following 3 partition instances are regarded as the same one and should be counted as one sheme: "1 1 5","1 5 1","5 1 1". Each truck can carry almost unlimited computers!!
Save Time :
You have to count how many sequences a[1..k] exist such that :
1) a[i] + a[2] + .... + a[k] = N such that permutations dont matter
My O(N*K^2) solution (Cannot figure out how to improve on it)
#include<assert.h>
#include<stdio.h>
#include<algorithm>
using namespace std;
int DP[5001][5001];
void ini()
{
int i,j,k;
DP[0][0]=1;
for(k=1;k<=500;k++)
for(j=1;j<=500;j++)
for(i=1;i<=500;i++)
{
DP[i][j]+=j>=k?DP[i-1][j-k]:0;
DP[i][j]%=1988;
}
return ;
}
int main()
{
ini();
int N,K,i,j;
while(1)
{
scanf("%d%d",&N,&K);
if(N==0 && K==0)
return 0;
int i;
if(DP[K][N]==0)
{assert(0);}
printf("%d\n",DP[K][N]);
}
return 0;
}
Explanation of my solution DP[i][j] represents the number of ways I can have total j computers using i Trucks only.
The k represents the number of computers with which I am dealing with that means I am just avoiding permutations!
How can I improve it to O(N*K)?
Problem constraints
N (1<=N<=5000) and K(1<=K<=N)
Problem Link: Problem Spoj

Just say that you have K gift boxes and N chocolates.
I will start with a recursive and real easy to convert it to iterative solution.
The key to avoid repetitions is distributing chocolates in a ascending order (descending also works). So you 7 chocolates and I put 2 chocolate in the first box, I will put at least 2 in the second box. WHY? this helps in avoiding repetitions.
now onwards TCL = totalChocholatesLeft & TBL = totalBinsLeft
So S(TCL,TBL) = S(TCL-TBL,TBL) + S(TCL,TBL-1);
you have to call the above expression starting with S(n-k), k)
Why? because all boxes need at least one item so first put `1` each box.
Now you are left with only `n-k` chocolates.
That's all! that's the DP recursion.
How does it work?
So in order to remove repetitions we are maintaning the ascending order.
What is the easiest way to maintain the ascending order ?
If you put 1 chocolate in the ith box, put 1 in all boxes in front of it i+1, i++2 .....k.
So after keeping chocolate in a gift box, you have two choices :
Either you want to continue with current box :
S(TCL-TBL,TBL) covers this
or to move the next box just never consider this box again
S(TCL,TBL-1) covers this.
Equivalent DP would make have TC : O(NK)

This problem is equivalent to placing n-k identical balls (after already placing one ball in each cell to make sure it's not empty) in k identical cells.
This can be solved using the recurrence formula:
D(n,0) = 0 n > 0
D(n,k) = 0 n < 0
D(n,1) = 1 n >= 0
D(n,k) = D(n,k-1) + D(n-k,k)
Explanation:
Stop clauses:
D(n,0) - no way to put n>0 balls in 0 cells
D(n<0,k) - no way to put negative number of balls in k cells
D(n,1) - one way to put n balls in 1 cell: all in this cell
Recurrence:
We have two choices.
We either have one (or more) empty cell, so we recurse with the same problem, and one less cell: D(n,k-1)
Otherwise, we have no empty cells, so we put one ball in each cell, recurse with the same number of cells and k less balls, D(n-k,k)
The two possibilities are of disjoint sets, so the union of both sets is the summation of the two sizes, thus D(n,k) = D(n,k-1) + D(n-k,k)
The above recursive formula is easy to compute in O(1) (assuming O(1) arithmetics), if the "lower" problems are known, and the DP solution needs to fill a table of size (n+1)*(k+1), so this solution is O(nk)

Related

Incorrect Recursive approach to finding combinations of coins to produce given change

I was recently doing a project euler problem (namely #31) which was basically finding out how many ways we can sum to 200 using elements of the set {1,2,5,10,20,50,100,200}.
The idea that I used was this: the number of ways to sum to N is equal to
(the number of ways to sum N-k) * (number of ways to sum k), summed over all possible values of k.
I realized that this approach is WRONG, namely due to the fact that it creates several several duplicate counts. I have tried to adjust the formula to avoid duplicates, but to no avail. I am seeking the wisdom of stack overflowers regarding:
whether my recursive approach is concerned with the correct subproblem to solve
If there exists one, what would be an effective way to eliminate duplicates
how should we approach recursive problems such that we are concerned with the correct subproblem? what are some indicators that we've chosen a correct (or incorrect) subproblem?
When trying to avoid duplicate permutations, a straightforward strategy that works in most cases is to only create rising or falling sequences.
In your example, if you pick a value and then recurse with the whole set, you will get duplicate sequences like 50,50,100 and 50,100,50 and 100,50,50. However, if you recurse with the rule that the next value should be equal to or smaller than the currently selected value, out of those three you will only get the sequence 100,50,50.
So an algorithm that counts only unique combinations would be e.g.:
function uniqueCombinations(set, target, previous) {
for all values in set not greater than previous {
if value equals target {
increment count
}
if value is smaller than target {
uniqueCombinations(set, target - value, value)
}
}
}
uniqueCombinations([1,2,5,10,20,50,100,200], 200, 200)
Alternatively, you can create a copy of the set before every recursion, and remove the elements from it that you don't want repeated.
The rising/falling sequence method also works with iterations. Let's say you want to find all unique combinations of three letters. This algorithm will print results like a,c,e, but not a,e,c or e,a,c:
for letter1 is 'a' to 'x' {
for letter2 is first letter after letter1 to 'y' {
for letter3 is first letter after letter2 to 'z' {
print [letter1,letter2,letter3]
}
}
}
m69 gives a nice strategy that often works, but I think it's worthwhile to better understand why it works. When trying to count items (of any kind), the general principle is:
Think of a rule that classifies any given item into exactly one of several non-overlapping categories. That is, come up with a list of concrete categories A, B, ..., Z that will make the following sentence true: An item is either in category A, or in category B, or ..., or in category Z.
Once you have done this, you can safely count the number of items in each category and add these counts together, comfortable in the knowledge that (a) any item that is counted in one category is not counted again in any other category, and (b) any item that you want to count is in some category (i.e., none are missed).
How could we form categories for your specific problem here? One way to do it is to notice that every item (i.e., every multiset of coin values that sums to the desired total N) either contains the 50-coin exactly zero times, or it contains it exactly once, or it contains it exactly twice, or ..., or it contains it exactly RoundDown(N / 50) times. These categories don't overlap: if a solution uses exactly 5 50-coins, it pretty clearly can't also use exactly 7 50-coins, for example. Also, every solution is clearly in some category (notice that we include a category for the case in which no 50-coins are used). So if we had a way to count, for any given k, the number of solutions that use coins from the set {1,2,5,10,20,50,100,200} to produce a sum of N and use exactly k 50-coins, then we could sum over all k from 0 to N/50 and get an accurate count.
How to do this efficiently? This is where the recursion comes in. The number of solutions that use coins from the set {1,2,5,10,20,50,100,200} to produce a sum of N and use exactly k 50-coins is equal to the number of solutions that sum to N-50k and do not use any 50-coins, i.e. use coins only from the set {1,2,5,10,20,100,200}. This of course works for any particular coin denomination that we could have chosen, so these subproblems have the same shape as the original problem: we can solve each one by simply choosing another coin arbitrarily (e.g. the 10-coin), forming a new set of categories based on this new coin, counting the number of items in each category and summing them up. The subproblems become smaller until we reach some simple base case that we process directly (e.g. no allowed coins left: then there is 1 item if N=0, and 0 items otherwise).
I started with the 50-coin (instead of, say, the largest or the smallest coin) to emphasise that the particular choice used to form the set of non-overlapping categories doesn't matter for the correctness of the algorithm. But in practice, passing explicit representations of sets of coins around is unnecessarily expensive. Since we don't actually care about the particular sequence of coins to use for forming categories, we're free to choose a more efficient representation. Here (and in many problems), it's convenient to represent the set of allowed coins implicitly as simply a single integer, maxCoin, which we interpret to mean that the first maxCoin coins in the original ordered list of coins are the allowed ones. This limits the possible sets we can represent, but here that's OK: If we always choose the last allowed coin to form categories on, we can communicate the new, more-restricted "set" of allowed coins to subproblems very succinctly by simply passing the argument maxCoin-1 to it. This is the essence of m69's answer.
There's some good guidance here. Another way to think about this is as a dynamic program. For this, we must pose the problem as a simple decision among options that leaves us with a smaller version of the same problem. It boils out to a certain kind of recursive expression.
Put the coin values c0, c1, ... c_(n-1) in any order you like. Then define W(i,v) as the number of ways you can make change for value v using coins ci, c_(i+1), ... c_(n-1). The answer we want is W(0,200). All that's left is to define W:
W(i,v) = sum_[k = 0..floor(200/ci)] W(i+1, v-ci*k)
In words: the number of ways we can make change with coins ci onward is to sum up all the ways we can make change after a decision to use some feasible number k of coins ci, removing that much value from the problem.
Of course we need base cases for the recursion. This happens when i=n-1: the last coin value. At this point there's a way to make change if and only if the value we need is an exact multiple of c_(n-1).
W(n-1,v) = 1 if v % c_(n-1) == 0 and 0 otherwise.
We generally don't want to implement this as a simple recursive function. The same argument values occur repeatedly, which leads to an exponential (in n and v) amount of wasted computation. There are simple ways to avoid this. Tabular evaluation and memoization are two.
Another point is that it is more efficient to have the values in descending order. By taking big chunks of value early, the total number of recursive evaluations is minimized. Additionally, since c_(n-1) is now 1, the base case is just W(n-1)=1. Now it becomes fairly obvious that we can add a second base case as an optimization: W(n-2,v) = floor(v/c_(n-2)). That's how many times the for loop will sum W(n-1,1) = 1!
But this is gilding a lilly. The problem is so small that exponential behavior doesn't signify. Here is a little implementation to show that order really doesn't matter:
#include <stdio.h>
#define n 8
int cv[][n] = {
{200,100,50,20,10,5,2,1},
{1,2,5,10,20,50,100,200},
{1,10,100,2,20,200,5,50},
};
int *c;
int w(int i, int v) {
if (i == n - 1) return v % c[n - 1] == 0;
int sum = 0;
for (int k = 0; k <= v / c[i]; ++k)
sum += w(i + 1, v - c[i] * k);
return sum;
}
int main(int argc, char *argv[]) {
unsigned p;
if (argc != 2 || sscanf(argv[1], "%d", &p) != 1 || p > 2) p = 0;
c = cv[p];
printf("Ways(%u) = %d\n", p, w(0, 200));
return 0;
}
Drumroll, please...
$ ./foo 0
Ways(0) = 73682
$ ./foo 1
Ways(1) = 73682
$ ./foo 2
Ways(2) = 73682

Dynamic Programming Coin Change Problems

I am having issues with understanding dynamic programming solutions to various problems, specifically the coin change problem:
"Given a value N, if we want to make change for N cents, and we have infinite supply of each of S = { S1, S2, .. , Sm} valued coins, how many ways can we make the change? The order of coins doesn’t matter.
For example, for N = 4 and S = {1,2,3}, there are four solutions: {1,1,1,1},{1,1,2},{2,2},{1,3}. So output should be 4. For N = 10 and S = {2, 5, 3, 6}, there are five solutions: {2,2,2,2,2}, {2,2,3,3}, {2,2,6}, {2,3,5} and {5,5}. So the output should be 5."
There is another variation of this problem where the solution is the minimum number of coins to satisfy the amount.
These problems appear very similar, but the solutions are very different.
Number of possible ways to make change: the optimal substructure for this is DP(m,n) = DP(m-1, n) + DP(m, n-Sm) where DP is the number of solutions for all coins up to the mth coin and amount=n.
Minimum amount of coins: the optimal substructure for this is
DP[i] = Min{ DP[i-d1], DP[i-d2],...DP[i-dn] } + 1 where i is the total amount and d1..dn represent each coin denomination.
Why is it that the first one required a 2-D array and the second a 1-D array? Why is the optimal substructure for the number of ways to make change not "DP[i] = DP[i-d1]+DP[i-d2]+...DP[i-dn]" where DP[i] is the number of ways i amount can be obtained by the coins. It sounds logical to me, but it produces an incorrect answer. Why is that second dimension for the coins needed in this problem, but not needed in the minimum amount problem?
LINKS TO PROBLEMS:
http://comproguide.blogspot.com/2013/12/minimum-coin-change-problem.html
http://www.geeksforgeeks.org/dynamic-programming-set-7-coin-change/
Thanks in advance. Every website I go to only explains how the solution works, not why other solutions do not work.
Lets first talk about the number of ways, DP(m,n) = DP(m-1, n) + DP(m, n-Sm). This in indeed correct because either you can use the mth denomination or you can avoid it. Now you say why don't we write it as DP[i] = DP[i-d1]+DP[i-d2]+...DP[i-dn]. Well this will lead to over counting , lets take an example where n=4 m=2 and S={1,3}. Now according to your solution dp[4]=dp[1]+dp[3]. ( Assuming 1 to be a base case dp[1]=1 ) .Now dp[3]=dp[2]+dp[0]. ( Again dp[0]=1 by base case ). Again applying the same dp[2]=dp[1]=1. Thus in total you get answer as 3 when its supposed to be just 2 ( (1,3) and (1,1,1,1) ). Its so because
your second method treats (1,3) and (3,1) as two different solution.Your second method can be applied to case where order matters, which is also a standard problem.
Now to your second question you say that minimum number of denominations can
be found out by DP[i] = Min{ DP[i-d1], DP[i-d2],...DP[i-dn] } + 1. Well this is correct as in finding minimum denominations, order or no order does not matter. Why this is linear / 1-D DP , well although the DP array is 1-D each state depends on at most m states unlike your first solution where array is 2-D but each state depends on at most 2 states. So in both case run time which is ( number of states * number of states each state depends on ) is the same which is O(nm). So both are correct, just your second solution saves memory. So either you can find it by 1-D array method or by 2-D by using the recurrence
dp(n,m)=min(dp(m-1,n),1+dp(m,n-Sm)). (Just use min in your first recurrence)
Hope I cleared the doubts , do post if still something is unclear.
This is a very good explanation of the coin change problem using Dynamic Programming.
The code is as follows:
public static int change(int amount, int[] coins){
int[] combinations = new int[amount + 1];
combinations[0] = 1;
for(int coin : coins){
for(int i = 1; i < combinations.length; i++){
if(i >= coin){
combinations[i] += combinations[i - coin];
//printAmount(combinations);
}
}
//System.out.println();
}
return combinations[amount];
}

Count ways to take atleast one stick

There are N sticks placed in a straight line. Bob is planning to take few of these sticks. But whatever number of sticks he is going to take, he will take no two successive sticks.(i.e. if he is taking a stick i, he will not take i-1 and i+1 sticks.)
So given N, we need to calculate how many different set of sticks he could select. He need to take at least stick.
Example : Let N=3 then answer is 4.
The 4 sets are: (1, 3), (1), (2), and (3)
Main problem is that I want solution better than simple recursion. Can their be any formula for it? As am not able to crack it
It's almost identical to Fibonacci. The final solution is actually fibonacci(N)-1, but let's explain it in terms of actual sticks.
To begin with we disregard from the fact that he needs to pick up at least 1 stick. The solution in this case looks as follows:
If N = 0, there is 1 solution (the solution where he picks up 0 sticks)
If N = 1, there are 2 solutions (pick up the stick, or don't)
Otherwise he can choose to either
pick up the first stick and recurse on N-2 (since the second stick needs to be discarded), or
leave the first stick and recurse on N-1
After this computation is finished, we remove 1 from the result to avoid counting the case where he picks up 0 sticks in total.
Final solution in pseudo code:
int numSticks(int N) {
return N == 0 ? 1
: N == 1 ? 2
: numSticks(N-2) + numSticks(N-1);
}
solution = numSticks(X) - 1;
As you can see numSticks is actually Fibonacci, which can be solved efficiently using for instance memoization.
Let the number of sticks taken by Bob be r.
The problem has a bijection to the number of binary vectors with exactly r 1's, and no two adjacent 1's.
This is solveable by first placing the r 1's , and you are left with exactly n-r 0's to place between them and in the sides. However, you must place r-1 0's between the 1's, so you are left with exactly n-r-(r-1) = n-2r+1 "free" 0's.
The number of ways to arrange such vectors is now given as:
(1) = Choose(n-2r+1 + (r+1) -1 , n-2r+1) = Choose(n-r+1, n-2r+1)
Formula (1) is deriving from number of ways of choosing n-2r+1
elements from r+1 distinct possibilities with replacements
Since we solved it for a specific value of r, and you are interested in all r>=1, you need to sum for each 1<=r<=n
So, the solution of the problem is given by the close formula:
(2) = Sum{ Choose(n-r+1, n-2r+1) | for each 1<=r<=n }
Disclaimer:
(A close variant of the problem with fixed r was given as HW in the course I am TAing this semester, main difference is the need to sum the various values of r.

How to efficiently detect a tie early in m,n,k-game (generalized tic-tac-toe)?

I'm implementing an m,n,k-game, a generalized version of tic-tac-toe, where m is the number of rows, n is the number of columns and k is the number of pieces that a player needs to put in a row to win. I have implemented a check for a win, but I haven't figured out a satisfactory way to check before the board is full of pieces, if no player can win the game. In other words, there might be empty slots on the board, but they cannot be filled in such a way that one player would win.
My question is, how to check this efficiently? The following algorithm is the best that I can think of. It checks for two conditions:
A. Go over all board positions in all 4 directions (top to bottom, right to left, and both diagonal directions). If say k = 5, and 4 (= k-1) consecutive empty slots are found, stop checking and report "no tie". This doesn't take into account for example the following situation:
OX----XO (Example 1)
where a) there are 4 empty consecutive slots (-) somewhere between two X's, b) next it is O's turn, c) there are less than four other empty positions on the board and no player can win by putting pieces to those, and d) it is not possible to win in any other direction than horizontally in the shown slots either. Now we know that it is a tie because O will eventually block the last winning possibility, but erroneously it is not reported yet because there are four consecutive empty slots. That would be ok (but not great). Checking this condition gives a good speed-up at the beginning when the checking algorithm usually finds such a case early, but it gets slower as more pieces are put on the board.
B. If this k-1-consecutive-empty-slots-condition isn't met, the algorithm would check the slots again consecutively in all 4 directions. Suppose we are currently checking from left to right. If at some point an X is encountered and it was preceded by an O or - (empty slot) or a board border, then start counting the number of consecutive X's and empty slots, counting in this first encountered X. If one can count to 5, then one knows it is possible for X to win, and "no tie" is reported. If an O preceded by an X is encountered before 5 consecutive X's, then X cannot win in those 5 slots from left to right starting from where we started counting. For example:
X-XXO (Example 2)
12345
Here we started checking at position 1, counted to 4, and encountered an O. In this case, one would continue from the encountered O in the same way, trying to find 5 consecutive O's or empty slots this time. In another case when counting X's or empty slots, an O preceded by one or more empty slots is encountered, before counting to 5. For example:
X-X-O (Example 3)
12345
In this case we would again continue from the O at position 5, but add to the new counter (of consecutive O's or empty slots) the number of consecutive empty slots that preceded O, here 1, so that we wouldn't miss for example this possible winning position:
X-X-O---X (Example 4)
In this way, in the worst case, one would have to go through all positions 4 times (4 directions, and of course diagonals whose length is less than k can be skipped), giving running time O(mn).
The best way I could think of was doing these two described checks, A and B, in one pass. If the checking algorithm gets through all positions in all directions without reporting "no tie", it reports a tie.
Knowing that you can check a win just by checking in the vicinity of the last piece that was added with running time O(k), I was wondering if there were quicker ways to do an early check for a tie. Doesn't have to be asymptotically quicker. I'm currently keeping the pieces in a two-dimensional array. Is there maybe a data structure that would allow an efficient check? One approach: what is the highest threshold of moves that one can wait the players to make before running any checks for a tie at all?
There are many related questions at Stack Overflow, for example this, but all discussions I could find either only pointed out the obvious tie condition, where the number of moves made is equal to the size of the board (or they checked if the board is full), or handled only the special case where the board is square: m = n. For example this answer claims to do the check for a tie in constant time, but only works when m = n = k. I'm interested in reporting the tie as early as possible and for general m,n and k. Also if the algorithm works for more than two players, that would be neat.
I would reduce the problem of determining a tie to the easier sub-problem:
Can player X still win?
If the answer is 'no' for all players, it is a tie.
To find out whether Player X can win:
fill all blank spaces with virtual 'X'-pieces
are there k 'X'-pieces in a row anywhere?
if there are not --> Player X cannot win. return false.
if there are, find the row of k stones with the least amount of virtual pieces. Count the number of virtual pieces in it.
count the number of moves player X has left, alternating with all other players, until the board is completely full.
if the number of moves is less than the amount of virtual pieces required to win, player X cannot win. return false.
otherwise, player X can still win. return true.
(This algorithm will report a possible win for player X even in cases where the only winning moves for X would have another player win first, but that is ok, since that would not be a tie either)
If, as you said, you can check a win just by checking in the vicinity of the last piece that was added with running time O(k), then I think you can run the above algorithm in O(k * Number_of_empty_spots): Add all virtual X-Piece, note any winning combinations in the vicinity of the added pieces.
The number of empty slots can be large, but as long as there is at least one empty row of size k and player X has still k moves left until the board is filled, you can be sure that player X can still win, so you do not need to run the full check.
This should work with any number of players.
Actually the constant time solution you referenced only works when k = m = n as well. If k is smaller then I don't see any way to adapt the solution to get constant time, basically because there are multiple locations on each row/column/diagonal where a winning consecutive k 0's or 1's may occur.
However, maintaining auxiliary information for each row/column/diagonal can give a speed up. For each row/column/diagonal, you can store the start and end locations for consecutive occurrences of 1's and blanks as possible winning positions for player 1, and similarly store start and end locations of consecutive occurrences of 0's and blanks as possible winning positions for player 0. Note that for a given row/column/diagonal, intervals for player 0 and 1 may overlap if they contain blanks. For each row/column/diagonal, store the intervals for player 1 in sorted order in a self-balancing binary tree (Note you can do this because the intervals are disjoint). Similarly store the intervals for player 0 sorted in a tree. When a player makes a move, find the row/column/diagonals that contain the move location and update the intervals containing the move in the appropriate row column and diagonal trees for the player that did not make the move. For the player that did not make a move, this will split an interval (if it exists) into smaller intervals that you can replace the old interval with and then rebalance the tree. If an interval ever gets to length less than k you can delete it. If a tree ever becomes empty then it is impossible for that player to win in that row/column/diagonal. You can maintain a counter of how many rows/columns/diagonals are impossible to win for each player, and if the counter ever reaches the total number of rows/columns/diagonals for both players then you know you have a tie. The total running time for this is O(log(n/k) + log(m/k)) to check for a tie per move, with O(mn/k) extra space.
You can similarly maintain trees that store consecutive intervals of 1's (without spaces) and update the trees in O(log n + log m) time when a move is made, basically searching for the positions before and after the move in your tree and updating the interval(s) found and merging two intervals if two intervals (before and after) are found. Then you report a win if an interval is ever created/updated and obtains length greater than or equal to k. Similarly for player 0. Total time to check for a win is O(log n + log m) which may be better than O(k) depending on how large k is. Extra space is O(mn).
Let's look at one row (or column or diagonal, it doesn't matter) and count the number of winning lines of length k ("k-line") it's possible to make, at each place in the row, for player X. This solution will keep track of that number over the course of the game, checking fulfillment of the winning condition on each move as well as detecting a tie.
1 2 3... k k k k... 3 2 1
There is one k-line including an X in the leftmost slot, two with the second slot from the left, and so on. If an opposing player, O or otherwise, plays in this row, we can reduce the k-line possibility counts for player X in O(k) time at the time of the move. (The logic for this step should be straightforward after doing an example, needing no other data structure, but any method involving checking each of the k rows of k from will do. Going left to right, only k operations on the counts is needed.) An enemy piece should set the possibility count to -1.
Then, a detectably tied game is one where no cell has a non-zero k-line possibility count for any player. It's easy to check this by keeping track of the index of the first non-zero cell. Maintaining the structure amounts to O(k*players) work on each move. The number of empty slots is less than those filled, for positions that might be tied, so the other answers are good for checking a position in isolation. However, at least for reasonably small numbers of players, this problem is intimately linked with checking the winning condition in the first place, which at minimum you must do, O(k), on every move. Depending on your game engine there may be a better structure that is rich enough to find good moves as well as detect ties. But the possibility counting structure has the nice property that you can check for a win whilst updating it.
If space isn't an issue, I had this idea:
For each player maintain a structure sized (2mn + (1 - k)(m + n) + 2(m - k + 1)(n - k + 1) + 2(sum 1 to (m - k))) where each value represents if one of another player's moves are in one distinct k-sized interval. For example for a 8-8-4 game, one element in the structure could represent row 1, cell 0 to 3; another row 1, cell 1 to 4; etc.
In addition, one variable per player will represent how many elements in their structure are still unset. Only one move is required to set an element, showing that that k-interval can no longer be used to win.
An update of between O(k) and O(4k) time per player seems needed per move. A tie is detected when the number of players exceeds the number of different elements unset.
Using bitsets, the number of bytes needed for each player's structure would be the structure size divided by 8. Notice that when k=m=n, the structure size is 4*k and update time O(4). Less than half a megabyte per player would be needed for a 1000,1000,5 game.
Below is a JavaScript example.
var m = 1000, n = 1000, k = 5, numberOfPlayers = 2
, numberOfHorizontalKIs = m * Math.max(n - k + 1,0)
, numberOfverticalKIs = n * Math.max(m - k + 1,0)
, horizontalVerticalKIArraySize = Math.ceil((numberOfHorizontalKIs + numberOfverticalKIs)/31)
, horizontalAndVerticalKIs = Array(horizontalVerticalKIArraySize)
, numberOfUnsetKIs = horizontalAndVerticalKIs
, upToM = Math.max(0,m - k) // southwest diagonals up to position m
, upToMSum = upToM * (upToM + 1) / 2
, numberOfSouthwestKIs = 2 * upToMSum //sum is multiplied by 2 to account for bottom-right-corner diagonals
+ Math.max(0,n - m + 1) * (m - k + 1)
, diagonalKIArraySize = Math.ceil(2 * numberOfSouthwestKIs/31)
, diagonalKIs = Array(diagonalKIArraySize)
, numberOfUnsetKIs = 2 * numberOfSouthwestKIs + numberOfHorizontalKIs + numberOfverticalKIs
function checkTie(move){
var row = move[0], column = move[1]
//horizontal and vertical
for (var rotate=0; rotate<2; rotate++){
var offset = Math.max(k - n + column, 0)
column -= offset
var index = rotate * numberOfHorizontalKIs + (n - k + 1) * row + column
, count = 0
while (column >= 0 && count < k - offset){
var KIArrayIndex = Math.floor(index / 31)
, bitToSet = 1 << index % 31
if (!(horizontalAndVerticalKIs[KIArrayIndex] & bitToSet)){
horizontalAndVerticalKIs[KIArrayIndex] |= bitToSet
numberOfUnsetKIs--
}
index--
column--
count++
}
//rotate board to log vertical KIs
var mTmp = m
m = n
n = mTmp
row = move[1]
column = move[0]
count = 0
}
//rotate board back
mTmp = m
m = n
n = mTmp
// diagonals
for (var rotate=0; rotate<2; rotate++){
var diagonalTopColumn = column + row
if (diagonalTopColumn < k - 1 || diagonalTopColumn >= n + m - k){
continue
} else {
var offset = Math.max(k - m + row, 0)
row -= offset
column += offset
var dBeforeM = Math.min (diagonalTopColumn - k + 1,m - k)
, dAfterM = n + m - k - diagonalTopColumn
, index = dBeforeM * (dBeforeM + 1) / 2
+ (m - k + 1) * Math.max (Math.min(diagonalTopColumn,n) - m + 1,0)
+ (diagonalTopColumn < n ? 0 : upToMSum - dAfterM * (dAfterM + 1) / 2)
+ (diagonalTopColumn < n ? row : n - 1 - column)
+ rotate * numberOfSouthwestKIs
, count = 0
while (row >= 0 && column < n && count < k - offset){
var KIArrayIndex = Math.floor(index / 31)
, bitToSet = 1 << index % 31
if (!(diagonalKIs[KIArrayIndex] & bitToSet)){
diagonalKIs[KIArrayIndex] |= bitToSet
numberOfUnsetKIs--
}
index--
row--
column++
count++
}
}
//mirror board
column = n - 1 - column
}
if (numberOfUnsetKIs < 1){
return "This player cannot win."
} else {
return "No tie."
}
}

Algorithm to find out all the possible positions

I need an algorithm to find out all the possible positions of a group of pieces in a chessboard. Like finding all the possible combinations of the positions of a number N of pieces.
For example in a chessboard numbered like cartesian coordinate systems any piece would be in a position
(x,y) where 1 <= x <= 8 and 1 <= y <= 8
I'd like to get an algorithm which can calculate for example for 3 pieces all the possible positions of the pieces in the board. But I don't know how can I get them in any order. I can get all the possible positions of a single piece but I don't know how to mix them with more pieces.
for(int i = 0; i<= 8; i++){
for(int j = 0; j<= 8; j++){
System.out.println("Position: x:"+i+", y:"+j);
}
}
How can I get a good algoritm to find all the posible positions of the pieces in a chessboard?
Thanks.
You got 8x8 board, so total of 64 squares.
Populate a list containing these 64 sqaures [let it be list], and find all of the possibilities recursively: Each step will "guess" one point, and invoke the recursve call to find the other points.
Pseudo code:
choose(list,numPieces,sol):
if (sol.length == numPieces): //base clause: print the possible solution
print sol
return
for each point in list:
sol.append(point) //append the point to the end of sol
list.remove(point)
choose(list,numPieces,sol) //recursive call
list.add(point) //clean up environment before next recursive call
sol.removeLast()
invoke with choose(list,numPieces,[]) where list is the pre-populated list with 64 elements, and numPieces is the pieces you are going to place.
Note: This solution assumes pieces are not identical, so [(1,2),(2,1)] and [(2,1),(1,2)] are both good different solutions.
EDIT:
Just a word about complexity, since there are (n^2)!/(n^2-k)! possible solutions for your problem - and you are looking for all of them, any algorithm will suffer from exponential run time, so trying to invoke it with just 10 pieces, will take ~400 years
[In the above notation, n is the width and length of the board, and k is the number of pieces]
You can use a recursive algorithm to generate all possiblities:
void combine(String instr, StringBuffer outstr, int index)
{
for (int i = index; i < instr.length(); i++)
{
outstr.append(instr.charAt(i));
System.out.println(outstr);
combine(instr, outstr, i + 1);
outstr.deleteCharAt(outstr.length() - 1);
}
}
combine("abc", new StringBuffer(), 0);
As I understand you should consider that some firgure may come block some potential position for figures that can reach them on the empty board. I guess it is the most tricky part.
So you should build some set of vertexes (set of board states) that is reached from some single vertex (initial board state).
The first algorithm that comes to my mind:
Pre-conditions:
Order figures in some way to form circle.
Assume initial set of board states (S0) to contain single element which represents inital board state.
Actions
Choose next figure to extend set of possible positions
For each state of board within S(n) walk depth-first all possible movements that new board states and call it F(n) (frame).
Form S(n+1) = S(n) ∪ F(n).
Repeat steps till all frames of updates during whole circle pass will not be empty.
This is kind of mix breath-first and depth-first search

Resources