Indexing logs with es-hadoop - hadoop

I am new to elasticsearch and want to index my website logs which are stored on HDFS for fast querying.
I have a well structured pipeline which runs a script every 20 minutes to ingest the data into HDFS.
I want to integrate elasticsearch with it, so that it also indexes these logs based on particular field(s) and thereby giving faster query results using spark SQL.
So, my question is, can I index my data based on particular field(s) only?
Also, my logs are saved in avro file format. Does es provides a way to directly index avro serialized data or do I need to convert it into some other format?
Thank you in advance.

I would suggest you to look at Elasticsearch, Logstash and Kibana stack that should be good enough to full fill your requirement. Putting it on HDFS and then using ES would be additional overhead.
Instead, you can use Logstash to pump data into ES, index on whatever fields you wish to query and build easy dashboards in less than 10 minutes of exercise. Take a look at this tutorial for better step-by-step guide.
http://hadooptutorials.co.in/tutorials/elasticsearch/log-analytics-using-elasticsearch-logstash-kibana.html

Related

Can you run Elasticsearch with Loki?

I have elastic configured with Grafana and it has logs. I tried to query logs for the elasticsearch in grafana but did not have much succes. I went online to try to learn how to do so, but when I do it talks about Loki. Are you able to use Loki with Elasticsearch? Do not see a definite answer for this online.
Using Loki with ES defeats the purpose of using Loki itself.
Loki prides itself on indexing only the metadata/labels of the logs and storing the actual log data separately in a compressed manner.
This reduces storage costs and leads to faster retrieval of data as there is less data to index as compared to the an ES index which indexes everything in a log line and worse still ,if the data is missing ,stores the index attribute as empty. (Almost similar to the diff between SQL vs NoSQL)
As of now, Loki does not support ES as the index store.
It uses two types of indices:- Labels and log chunks and stores them separately to be queried as and when required.
Label/metadata/index :- uses Cassandra,GCS,File System,S3
Data chunks:- Cassandra,BigTable,DynamoDB,BoltDB
For more info see Loki storage.

Elastic Search connector for SPARK

Use Case:
An application uses spark to process data for 5 minutes, the data to be processed could be of several hundred thousands of records in data storage.
The choice for data storage is Elastic Search.
Issue:
Do we have a connector for the spark in elasticsearch similar to the connector in MongoDB?
https://www.mongodb.com/products/spark-connector.
Investigation:
I spent a lot of time but the best I could find was a solution using search API with scroll(we can fetch the limited number of records for given number interval), but this does not fit my use-case.
Please note that my elastic search will have JSON data and we do not want to save RDD.
as mentioned in below
https://www.elastic.co/guide/en/elasticsearch/hadoop/master/spark.html
You can use spark connector for ES , and data is not saved in any binary form - but RDD/Dataframe is serialized as JSON and thats what goes into Elasticsearch.

Can Beats update existing documents in Elasticsearch?

Consider the following use case:
I want the information from one particular log line to be indexed into Elasticsearch, as a document X.
I want the information from some log line further down the log file to be indexed into the same document X (not overriding the original, just adding more data).
The first part, I can obviously achieve with filebeat.
For the second, does anyone have any idea about how to approach it? Could I still use filebeat + some pipeline on an ingest node for example?
Clearly, I can use the ES API to update the said document, but I was looking for some solution that doesn't require changes to my application - rather, it is all possible to achieve using the log files.
Thanks in advance!
No, this is not something that Beats were intended to accomplish. Enrichment like you describe is one of the things that Logstash can help with.
Logstash has an Elasticsearch input that would allow you to retrieve data from ES and use it in the pipeline for enrichment. And the Elasticsearch output supports upsert operations (update if exists, insert new if not). Using both those features you can enrich and update documents as new data comes in.
You might want to consider ingesting the log lines as is to Elasticearch. Then using Logstash, build a separate index that is entity specific and driven based on data from the logs.

Summarization in Elasticsearch

I am a newbie to Elasticsearch. We are currently using Splunk platform for our analytics application and looking to migrate to ELK. Splunk provides options to schedule searches to run in background periodically and to store the search results in a separate summary index. Is similar functionality available in Elasticsearch? If so, please point me to the documentation containing the process.
Thanks,
Keerthana
This is a great use case. Of course Elasticsearch can perform such tasks, but it is more manual. You have to write your own script. So for example, if you want to summarize data, you can use ElasticSearch aggregations, and take the result (which comes in JSON format) and store it back into an index where you keep summary data. This way, even if you delete your raw data, your summary data lives on.
Elasticsearch comes with different clients. I like to use the Python Elasticsearch DSL library.

How can I copy hadoop data to SOLR

I've a SOLR search which uses lucene index as a backend.
I also have some data in Hadoop I would like to use.
How do I copy this data into SOLR ??
Upon googling the only likns I can find tell me how to use use an HDFS index instead of a local index, in SOLR.
I don't want to read the index directly from hadoop, I want to copy them to SOLR and read it from there.
How do I copy? And it would be great if there is some incremental copy mechanism.
If you have a standalone Solr instance, then you could face some scaling issues, depending on the volume of data.
I am assuming high volume given you are using Hadoop/HDFS. In which case, you might need to look at SolrCloud.
As for reading from hdfs, here is a tutorial from LucidImagination, that addresses this issue, and recommends the use of Behemoth
You might also want to look at Katta project, that claims to integrate with hadoop and provide near real-time read access of large datasets . The architecture is illustrated here
EDIT 1
Solr has an open ticket for this. Support for HDFS is scheduled for Solr 4.9. You can apply the patch if you feel like it.
You cannot just copy custom data to Solr, you need to index* it. You data may have any type and format (free text, XML, JSON or even binary data). To use it with Solr, you need to create documents (flat maps with key/value pairs as fields) and add them to Solr. Take a look at this simple curl-based example.
Note, that reading data from HDFS is a different question. For Solr, it doesn't matter where you are reading data from as long as you provide it with documents.
Storing index on local disk or in HDFS is also a different question. If you expect your index to be really large, you can configure Solr to use HDFS. Otherwise you can use default properties and use local disk.
* - "Indexing" is a common term for adding documents to Solr, but in fact adding documents to Solr internal storage and indexing (making fields searchable) are 2 distinct things and can be configured separately.

Resources