Is it possible to reference while recurring to anonymous function in scheme ? - scheme

I try to write function which add some number to every element in the list and then makes sum of all this terms.
(define (num-to-sumtup num)
(lambda (tup)
(cond
((null? tup) 0)
(else (+ (car tup) num (num-to-sumtup ())) ;; here I need to get reference on the inner function
is it possible?

You don't need to make it a anonymous procedure. It may have a name in the scope of num-to-sumtup. Here are some examples of ways to do it. The simples way to do this would be to use the rec syntax which is defined in the SRFI-31.
#!r6rs
(import (rnrs base)
(srfi :31))
(define (num-to-sumtup num)
(rec (recur tup)
(cond
((null? tup) 0)
(else (+ (car tup) num (recur (cdr tup)))))))
((num-to-sumtup 10) '(1 2 3 4 5)) ; ==> 65
You can also do this with define:
(define (num-to-sumtup num)
(define (sum-list tup)
(cond
((null? tup) 0)
(else (+ (car tup) num (sum-list (cdr tup))))))
sum-list); we return the locally named procedure
Using higher order procedures and cut from SRFI-26.
#!r6rs
(import (rnrs base)
(rnrs lists) ; fold-left
(srfi :26)) ; cut
(define (num-to-sumtup num)
(lambda (tup)
(fold-left (cut + <> <> num) 0 tup)))

Yes, it is possible. num-to-sumtup Takes a number as argument, and returns a function, that takes a list. So you execute it to get the function, and then execute that function.
(define (num-to-sumtup num)
(lambda (tup)
(cond
((null? tup) 0)
(else
(+ (car tup) num ((num-to-sumtup num) (cdr tup)))))))
;Value: num-to-sumtup
((num-to-sumtup 10) '(1 2 3 4 5))
;Value: 65
In the spirit of sylwester's answer here's another option
(define (num-to-sup num)
(lambda (tup)
(foldl (lambda (x y) (+ num x y)) 0 tup)))

Related

Arity Mismatch: where to put parameter

With my code I need to use multiple functions and combine them into one that will evaluate to the nth prime number between a and b. The functions I need to use are gen-consecutive filter value-at-position.
The problem with my code is that with the function gen-consecutive requires 3 parameters a function (f) and a and b which acts as a range, and I am not sure where to put the f argument in my nth-prime-between function.
I keep getting the error "gen-consecutive: arity mismatch" and that it expected 3 arguments (f a b) instead of just 2 arguments (a b)
Here is my code:
(define (nth-prime-between a b n)
(value-at-position filter prime? (gen-consecutive a b)) n)
Here is the other functions:
(define (gen-consecutive f a b)
(if (> a b)
'()
(cons (f a) (gen-consecutive f (+ a 1) b))))
(define (filter f lst)
(cond ((null? lst) '())
((f (car lst))
(cons (car lst) (filter f (cdr lst))))
(else
(filter f (cdr lst)))))
(define (value-at-position lst k)
(cond ((null? lst) lst)
((= k 1) (car lst))
(else (value-at-position (- k 1) (cdr lst)))))
There are 3 mistakes in your program!
I do NOT have a function prime?, therefore I used odd? instead
(define (nth-prime-between a b n)
;; missing parenthesis for the function filter
;; n is value of the function
;; (value-at-position filter odd? (gen-consecutive a b)) n)
(value-at-position (filter odd? (gen-consecutive a b)) n))
;; kill the parameter f
;;
;; (define (gen-consecutive f a b)
;; (if (> a b)
;; '()
;; (cons (f a) (gen-consecutive f (+ a 1) b))))
(define (gen-consecutive a b)
(if (> a b)
'()
(cons a (gen-consecutive (+ a 1) b))))
(define (filter f lst)
(cond ((null? lst) '())
((f (car lst))
(cons (car lst) (filter f (cdr lst))))
(else
(filter f (cdr lst)))))
(define (value-at-position lst k)
(cond ((null? lst) lst)
((= k 1) (car lst))
;; the sequence of (- k 1) and (cdr lst) is wrong
;; (else (value-at-position (- k 1) (cdr lst)))))
(else (value-at-position (cdr lst) (- k 1)))))
(define (odd? N)
(if (= (remainder N 2) 0)
#f
#t))
(nth-prime-between 1 10 3)
The deeper problem with task is:
When you call (nth-prime-between 1000 10000 2),
you must test 9000 numbers with (prime? n). Probably, it is enough to test 10 numbers.
By the way, there exists intervals of any length with no prime numbers in it.
To test a number N with with prime? you need to know the prime numbers less the (square-root N). Where will you store them?
If it is serious task, you can write a program using the sieve of Eratosthenes with a clever stopping condition.

Same-parity in Scheme

I am trying to solve the exercise 2.20 from SICP book. The exercise -
Write a procedure same-parity that takes one or more integers and returns a list of
all the arguments that have the same even-odd parity as the first argument. For example,
(same-parity 1 2 3 4 5 6 7)
(1 3 5 7)
(same-parity 2 3 4 5 6 7)
(2 4 6)
My code -
(define same-parity (lambda (int . l)
(define iter-even (lambda (l2 rl)
(cons ((null? l2) rl)
((even? (car l2))
(iter-even (cdr l2) (append rl (car l2))))
(else (iter-even (cdr l2) rl)))))
(define iter-odd (lambda (l2 rl)
(cons ((null? l2) rl)
((odd? (car l2))
(iter-odd (cdr l2) (append rl (car l2))))
(else (iter-odd (cdr l2) rl)))))
(if (even? int) (iter-even l (list int))
(iter-odd l (list int)))))
For some reason I am getting an error saying "The object (), passed as the first argument to cdr, is not the correct type". I tried to solve this for more than two hours, but I cant find any reason why it fails like that. Thanks for hlep.
Try this:
(define same-parity
(lambda (int . l)
(define iter-even
(lambda (l2 rl)
(cond ((null? l2) rl)
((even? (car l2))
(iter-even (cdr l2) (append rl (list (car l2)))))
(else (iter-even (cdr l2) rl)))))
(define iter-odd
(lambda (l2 rl)
(cond ((null? l2) rl)
((odd? (car l2))
(iter-odd (cdr l2) (append rl (list (car l2)))))
(else (iter-odd (cdr l2) rl)))))
(if (even? int)
(iter-even l (list int))
(iter-odd l (list int)))))
Explanation:
You are using cons instead of cond for the different conditions
in the part where append is called, the second argument must be a proper list (meaning: null-terminated) - but it is a cons-pair in your code. This was causing the error, the solution is to simply put the second element inside a list before appending it.
I must say, using append to build an output list is frowned upon. You should try to write the recursion in such a way that cons is used for creating the new list, this is more efficient, too.
Some final words - as you're about to discover in the next section of SICP, this problem is a perfect fit for using filter - a more idiomatic solution would be:
(define (same-parity head . tail)
(if (even? head)
(filter even? (cons head tail))
(filter odd? (cons head tail))))
First, I check the first element in the list. If it is even, I call the procedure that forms a list out of only the even elements. Else, I call the procedure that forms a list out of odd elements.
Here's my code
(define (parity-helper-even B)(cond
((= 1 (length B)) (cond
((even? (car B)) B)
(else '())
))
(else (cond
((even? (car B)) (append (list (car B)) (parity-helper-even (cdr B))))
(else (parity-helper-even(cdr B)))
))))
(define (parity-helper-odd B)(cond
((= 1 (length B)) (cond
((odd? (car B)) B)
(else '())
))
(else (cond
((odd? (car B)) (append (list (car B)) (parity-helper-odd (cdr B))))
(else (parity-helper-odd (cdr B)))
))))
(define (same-parity first . L) (cond
((even? first) (parity-helper-even (append (list first) L)))
(else (parity-helper-odd (append (list first) L)))))
(same-parity 1 2 3 4 5 6 7)
;Output (1 3 5 7)
While you are traversing the list, you might as well just split it into even and odd parities. As the last step, choose the one you want.
(define (parities args)
(let looking ((args args) (even '()) (odd '()))
(if (null? args)
(values even odd)
(let ((head (car args)))
(if (even? head)
(looking (cdr args) (cons head even) odd)
(looking (cdr args) even (cons head odd)))))))
(define (same-parity head . rest)
(let-values ((even odd) (parities (cons head rest)))
(if (even? head)
even
odd)))
Except for homework assignments, if you are going to look for one then you are likely to need the other. Said another way, you'd find yourself using parities more frequently in practice.
You could simply filter elements by parity of first element:
(define (same-parity x . y)
(define (iter z filter-by)
(cond ((null? z) z)
((filter-by (car z))
(cons (car z) (iter (cdr z) filter-by)))
(else (iter (cdr z) filter-by))))
(iter (cons x y) (if (even? x) even? odd?)))
And try:
(same-parity 1 2 3 4 5 6 7)
(same-parity 2 3 4 5 6 7)

Scheme function that returns a function

I need to write a scheme function that returns as a function which then takes another argument, eg a list and in turn return the desired result. In this example (c?r "arg") would return -- (car(cdr -- which then subsequently takes the list argument to return 2
> ((c?r "ar") '(1 2 3 4))
2
> ((c?r "ara") '((1 2) 3 4))
2
The problem I have is how can I return a function that accepts another arg in petite?
Here's how you might write such a function:
(define (c?r cmds)
(lambda (lst)
(let recur ((cmds (string->list cmds)))
(if (null? cmds)
lst
(case (car cmds)
((#\a) (car (recur (cdr cmds))))
((#\d) (cdr (recur (cdr cmds))))
(else (recur (cdr cmds))))))))
Note that I'm using d to signify cdr, not r (which makes no sense, to me). You can also write this more succinctly using string-fold-right (requires SRFI 13):
(define (c?r cmds)
(lambda (lst)
(string-fold-right (lambda (cmd x)
(case cmd
((#\a) (car x))
((#\d) (cdr x))
(else x)))
lst cmds)))
Just wanted to add my playing with this. Uses SRFI-1.
(import (rnrs)
(only (srfi :1) fold)) ;; require fold from SRFI-1
(define (c?r str)
(define ops (reverse (string->list str)))
(lambda (lst)
(fold (lambda (x acc)
((if (eq? x #\a) car cdr) ; choose car or cdr for application
acc))
lst
ops)))
Its very similar to Chris' version (more the previous fold-right) but I do the reverseso i can use fold in the returned procedure. I choose which of car or cdr to call by looking at the character.
EDIT
Here is an alternative version with much more preprocessing. It uses tail-ref and list-tail as shortcuts when there are runs of #\d's.
(define (c?r str)
(let loop ((druns 0) (ops (string->list str)) (funs '()))
(cond ((null? ops)
(let ((funs (reverse
(if (zero? druns)
funs
(cons (lambda (x)
(list-tail x druns))
funs)))))
(lambda (lst)
(fold (lambda (fun lst)
(fun lst))
lst
funs))))
((eq? (car ops) #\d) (loop (+ druns 1) (cdr ops) funs))
((= druns 0) (loop 0 (cdr ops) (cons car funs)))
(else (loop 0 (cdr ops) (cons (lambda (x)
(list-ref x druns))
funs))))))
This can be made even simpler in #!racket. we skip the reverse and just do (apply compose1 funs).
(define (c?r str)
(let loop ((druns 0) (ops (string->list str)) (funs '()))
(cond ((null? ops)
(let ((funs (if (zero? druns)
funs
(cons (lambda (x)
(list-tail x druns))
funs))))
(apply compose1 funs)))
((eq? (car ops) #\d) (loop (+ druns 1) (cdr ops) funs))
((= druns 0) (loop 0 (cdr ops) (cons car funs)))
(else (loop 0 (cdr ops) (cons (lambda (x)
(list-ref x druns))
funs))))))
Assuming a compose procedure:
(define (compose funs . args)
(if (null? funs)
(apply values args)
(compose (cdr funs) (apply (car funs) args))))
(compose (list cdr car) '(1 2 3 4))
=> 2
c?r can be defined in terms of compose like so:
(define (c?r funs)
(lambda (e)
(compose
(map
(lambda (f) (if (char=? f #\a) car cdr))
(reverse (string->list funs)))
e)))
then
((c?r "ar") '(1 2 3 4))
=> 2
((c?r "ara") '((1 2) 3 4))
=> 2

How to do square in RACKET

Here is my code:
(define (squares 1st)
(let loop([1st 1st] [acc 0])
(if (null? 1st)
acc
(loop (rest 1st) (* (first 1st) (first 1st) acc)))))
My test is:
(test (sum-squares '(1 2 3)) => 14 )
and it's failed.
The function input is a list of number [1 2 3] for example, and I need to square each number and sum them all together, output - number.
The test will return #t, if the correct answer was typed in.
This is rather similar to your previous question, but with a twist: here we add, instead of multiplying. And each element gets squared before adding it:
(define (sum-squares lst)
(if (empty? lst)
0
(+ (* (first lst) (first lst))
(sum-squares (rest lst)))))
As before, the procedure can also be written using tail recursion:
(define (sum-squares lst)
(let loop ([lst lst] [acc 0])
(if (empty? lst)
acc
(loop (rest lst) (+ (* (first lst) (first lst)) acc)))))
You must realize that both solutions share the same structure, what changes is:
We use + to combine the answers, instead of *
We square the current element (first lst) before adding it
The base case for adding a list is 0 (it was 1 for multiplication)
As a final comment, in a real application you shouldn't use explicit recursion, instead we would use higher-order procedures for composing our solution:
(define (square x)
(* x x))
(define (sum-squares lst)
(apply + (map square lst)))
Or even shorter, as a one-liner (but it's useful to have a square procedure around, so I prefer the previous solution):
(define (sum-squares lst)
(apply + (map (lambda (x) (* x x)) lst)))
Of course, any of the above solutions works as expected:
(sum-squares '())
=> 0
(sum-squares '(1 2 3))
=> 14
A more functional way would be to combine simple functions (sum and square) with high-order functions (map):
(define (square x) (* x x))
(define (sum lst) (foldl + 0 lst))
(define (sum-squares lst)
(sum (map square lst)))
I like Benesh's answer, just modifying it slightly so you don't have to traverse the list twice. (One fold vs a map and fold)
(define (square x) (* x x))
(define (square-y-and-addto-x x y) (+ x (square y)))
(define (sum-squares lst) (foldl square-y-and-addto-x 0 lst))
Or you can just define map-reduce
(define (map-reduce map-f reduce-f nil-value lst)
(if (null? lst)
nil-value
(map-reduce map-f reduce-f (reduce-f nil-value (map-f (car lst))))))
(define (sum-squares lst) (map-reduce square + 0 lst))
racket#> (define (f xs) (foldl (lambda (x b) (+ (* x x) b)) 0 xs))
racket#> (f '(1 2 3))
14
Without the use of loops or lamdas, cond can be used to solve this problem as follows ( printf is added just to make my exercises distinct. This is an exercise from SICP : exercise 1.3):
;; Takes three numbers and returns the sum of squares of two larger number
;; a,b,c -> int
;; returns -> int
(define (sum_sqr_two_large a b c)
(cond
((and (< a b) (< a c)) (sum-of-squares b c))
((and (< b c) (< b a)) (sum-of-squares a c))
((and (< c a) (< c b)) (sum-of-squares a b))
)
)
;; Sum of squares of numbers given
;; a,b -> int
;; returns -> int
(define (sum-of-squares a b)
(printf "ex. 1.3: ~a \n" (+ (square a)(square b)))
)
;; square of any integer
;; a -> int
;; returns -> int
(define (square a)
(* a a)
)
;; Sample invocation
(sum_sqr_two_large 1 2 6)

Add even items in list

I'd like to add the even items in a list and have the following algorithm I wrote to achieve the objective.
The error I am getting is:
+: expects type <number> as 2nd argument, given: #<void>; other arguments were: 4
The code:
(define (mylength alist cnt)
(if (null? alist)
0
(if (= (modulo cnt 2) 0)(+ (car alist) (mylength (cdr alist) (+ cnt 1)))))
(if (= (modulo cnt 2) 1)(mylength (cdr alist) (+ cnt 1))))
Could you please advise on the
i) error
ii) logic of the algorithm
Thanks!
First, indent your code properly:
(define (mylength alist cnt)
(if (null? alist) ;
0 ; this section is wasted because
(if (= (modulo cnt 2) 0) ; it's not the last expression
(+ (car alist) (mylength (cdr alist) (+ cnt 1))))) ;
(if (= (modulo cnt 2) 1) ; this if is the last expression, but
(mylength (cdr alist) (+ cnt 1)))) ; if it's false you get #<void>
You shouldn't have if expressions that don't have both the true and false branches. You have to remember that this isn't C, and anything that's not the last expression will be run and then thrown away.
Combine the last two if statements into one if statement:
(define (mylength alist cnt)
(if (null? alist)
0
(if (= (modulo cnt 2) 0)
(+ (car alist) (mylength (cdr alist) (+ cnt 1)))
(mylength (cdr alist) (+ cnt 1)))))
Edit: When I wrote "anything that's not the last expression will be run and then thrown away", I meant:
(begin
(+ 2 2)
(+ 4 1)
(+ 1 0)
(+ 1 1)) => 2
(let ((x 5))
(add1 x)
(+ x 2)
(* x 2)) => 10
((lambda ()
(if #t 3)
(if #f 0 4)
(if #t 2))) => 2
The other answer is completely right, but your interface is not very scheme-y. This is a more common form with tail recursion.
; Assumes given a list of numbers. Returns sum of even indices.
(define (mylength alist)
(let helper ((alist alist) (acc 0))
(cond
((null? alist) acc)
((null? (cdr alist)) (+ acc (car alist)))
(else (helper (cddr alist) (+ acc (car alist)))))))

Resources