I am using imsave() sequentially to make many PNGs that I will combine as an AVI and I would like to add moving text annotations. I use ImageJ to make AVIs or GIFs.
I don't want the axes, numbers, borders or anything, just the color image (as imsave() provides for example) with text (and maybe arrows) inside. These will change frame by frame. Pardon the use of jet.
I could use savefig() with ticks off and then do cropping as post processing, but is there a more convenient, direct, or "matplotlibithic" way to do this that wouldn't be so hard on my hard drive? (final thing will be pretty big).
A code snippet, added by request:
import numpy as np
import matplotlib.pyplot as plt
nx, ny = 101, 101
phi = np.zeros((ny, nx), dtype = 'float')
do_me = np.ones_like(phi, dtype='bool')
x0, y0, r0 = 40, 65, 12
x = np.arange(nx, dtype = 'float')[None,:]
y = np.arange(ny, dtype = 'float')[:,None]
rsq = (x-x0)**2 + (y-y0)**2
circle = rsq <= r0**2
phi[circle] = 1.0
do_me[circle] = False
do_me[0,:], do_me[-1,:], do_me[:,0], do_me[:,-1] = False, False, False, False
n, nper = 100, 100
phi_hold = np.zeros((n+1, ny, nx))
phi_hold[0] = phi
for i in range(n):
for j in range(nper):
phi2 = 0.25*(np.roll(phi, 1, axis=0) +
np.roll(phi, -1, axis=0) +
np.roll(phi, 1, axis=1) +
np.roll(phi, -1, axis=1) )
phi[do_me] = phi2[do_me]
phi_hold[i+1] = phi
change = phi_hold[1:] - phi_hold[:-1]
places = [(32, 20), (54,25), (11,32), (3, 12)]
plt.figure()
plt.imshow(change[50])
for (x, y) in places:
plt.text(x, y, "WOW", fontsize=16)
plt.text(5, 95, "Don't use Jet!", color="white", fontsize=20)
plt.show()
Method 1
Using an excellent answer to another question as a reference, I came up with the following simplified variant which seems to work nicely - just make sure the figsize (which is given in inches) aspect ratio matches the size ratio of the plot data:
import numpy as np
import matplotlib.pyplot as plt
test_image = np.eye(100)
fig = plt.figure(figsize=(4,4))
ax = plt.axes(frameon=False, xticks=[],yticks=[])
ax.imshow(test_image)
plt.savefig('test.png', bbox_inches='tight', pad_inches=0)
Note that I am using imshow with a test_image, which might behave differently from other plotting functions... please let me know in a comment in case you'd like to do something else.
Also note that the image will be (re-) sampled, so the figsize will influence the resolution of the written image.
As pointed out in the comments, the figsize setting doesn't match the size of the output image (or the size on screen, for that matter). To overcome this, use...
Method 2
Reading the FAQ entry Move the edge of an axes to make room for tick labels, I found a way to make the figsize parameter set the output image size directly, by moving the axes' ticks out of the visible area:
import numpy as np
import matplotlib.pyplot as plt
test_image = np.eye(100)
fig = plt.figure(figsize=(4,4))
ax = fig.add_axes([0,0,1,1])
ax.imshow(test_image)
plt.savefig('test.png')
Note that savefig has a default DPI setting (100 in my case) which - in combination with figsize - determines the number of pixels in x and y directions of the saved image. You can override this with the dpi keyword argument to savefig.
If you want to display the image on screen rather than saving it (by using plt.show() instead of the plt.savefig line in the code above), the size of the figure is dependent on (apart from the already familiar figsize parameter) the figure's DPI setting, which also has a default (80 on my system). This value can be overridden by passing the dpi keyword argument to the plt.figure() call.
Related
Following : How to rotate a non-squared image in frequency domain
I just ran this exact code (copy pasted from the author's code with just an additional normalization of the resulting image between 0 an 255 as shown)
... but I get horrible "aliasing" artifacts ... How is this possible ? I see that the OP shows nice unartifacted images from the rotation in frequency space... I would be very curious to know how to obtain that, surely you did not show all your code?
import numpy as np
import cv2
from numpy.fft import fftshift as fftshift
from numpy.fft import ifftshift as ifftshift
angle = 30
M = cv2.imread("phantom.png")
M = cv2.cvtColor(M, cv2.COLOR_BGR2GRAY)
M=np.float32(M)
hanning=cv2.createHanningWindow((M.shape[1],M.shape[0]),cv2.CV_32F)
M=hanning*M
sM = fftshift(M)
rotation_center=(M.shape[1]/2,M.shape[0]/2)
rot_matrix=cv2.getRotationMatrix2D(rotation_center,angle,1.0)
FsM = fftshift(cv2.dft(sM,flags = cv2.DFT_COMPLEX_OUTPUT))
rFsM=cv2.warpAffine(FsM,rot_matrix,(FsM.shape[1],FsM.shape[0]),flags=cv2.INTER_LINEAR, borderMode=cv2.BORDER_CONSTANT)
IrFsM = ifftshift(cv2.idft(ifftshift(rFsM),flags=cv2.DFT_REAL_OUTPUT))
x = IrFsM
x = ((x-np.min(x[:]))/(np.max(x[:])-np.min(x[:])))*255.0
cv2.imwrite('rotated_phantom.png',x)
the output image is:
Also, i ve always been told that it was impossible to correctly rotate (in discrete, not continuous) Fourier space because of interpolation, so how can you explain that?
The DFT imposes a periodicity to the image in both the frequency and the spatial domain (some people disagree with this, but still agree that this view is a good way to explain just about everything that happens in the DFT...). So imagine that your input is not the Shepp-Logan phantom, but an infinite repetition of it. When manipulating the data in the frequency domain, you affect not just the one copy of the image you see, but all of them, and not always in intuitive ways.
One of the consequences is that neighboring copies of your image in the spatial domain rotate, but also expand and come into you image.
The simplest way to avoid this is to pad the image with zeros to double its size.
import numpy as np
import cv2
from numpy.fft import fftshift as fftshift
from numpy.fft import ifftshift as ifftshift
angle = 30
M = cv2.imread("shepp-logan-small.tif")
M = cv2.cvtColor(M, cv2.COLOR_BGR2GRAY)
M = np.float32(M)
# Pad
v, h = M.shape
v //= 2
h //= 2
M = cv2.copyMakeBorder(M, v, v, h, h, cv2.BORDER_CONSTANT)
Now you can apply the rotation in the frequency domain like before. But note that the center of rotation should the pixel at shape//2, do not use a true division! Also note that we no longer need to apply a window function.
sM = fftshift(M)
rotation_center = (M.shape[1]//2,M.shape[0]//2)
rot_matrix = cv2.getRotationMatrix2D(rotation_center,angle,1.0)
FsM = fftshift(cv2.dft(sM,flags = cv2.DFT_COMPLEX_OUTPUT))
rFsM = cv2.warpAffine(FsM,rot_matrix,(FsM.shape[1],FsM.shape[0]),flags=cv2.INTER_LINEAR, borderMode=cv2.BORDER_CONSTANT)
IrFsM = ifftshift(cv2.idft(ifftshift(rFsM),flags=cv2.DFT_REAL_OUTPUT))
Finally, crop the result back to its original size.
# Crop
IrFsM = IrFsM[v:-v, h:-h]
Do note that the result is not pretty. It is much better to rotate in the spatial domain because, as you said, interpolation in the frequency domain is not really sensical.
I made an algorithm to measure an object using a reference, like this:
The reference is the frame and the other (AOL) is the desired object. My code obtained this result:
But the real AOL is 78.6. This is because of the perspective/angle of photograph. So I used in my code Deep Learning and I obtained the the reference and AOL mask, and I made a simple calculation based on the number of pixels for each mask to obtain AOL area (cm²), once I know the actual size of the reference. I tried to correct the angle/perpective based on the reference and I used the reference mask:
I tried to calculate quadrangle vertices based on the reference mask to correct the perspective. I created this code based on this reference Perspective correction in OpenCV using python:
# import the necessary packages
from scipy.spatial import distance as dist
from imutils import perspective
from imutils import contours
import numpy as np
import imutils
import cv2
import math
import matplotlib.pyplot as plt
# get the single external contours
# load the image, convert it to grayscale, and blur it slightly
image = cv2.imread("./ref/20210702_114527.png") ## Mask Image
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
gray = cv2.GaussianBlur(gray, (7, 7), 0)
# perform edge detection, then perform a dilation + erosion to
# close gaps in between object edges
edged = cv2.Canny(gray, 50, 100)
edged = cv2.dilate(edged, None, iterations=1)
edged = cv2.erode(edged, None, iterations=1)
# find contours in the edge map
cnts = cv2.findContours(edged.copy(), cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)
cnts = imutils.grab_contours(cnts)
# sort the contours from left-to-right and initialize the
# 'pixels per metric' calibration variable
(cnts, _) = contours.sort_contours(cnts)
pixelsPerMetric = None
orig = image.copy()
box = cv2.minAreaRect(min(cnts, key=cv2.contourArea))
box = cv2.cv.BoxPoints(box) if imutils.is_cv2() else cv2.boxPoints(box)
box = np.array(box, dtype="int")
# order the points in the contour such that they appear
# in top-left, top-right, bottom-right, and bottom-left
# order, then draw the outline of the rotated bounding
# box
box = perspective.order_points(box)
cv2.drawContours(orig, [box.astype("int")], -1, (0, 255, 0), 2)
# loop over the original points and draw them
for (x, y) in box:
cv2.circle(orig, (int(x), int(y)), 5, (0, 0, 255), -1)
print('Box: ',box)
cv2.imshow('Orig', orig)
img = cv2.imread("./meat/sair/20210702_114527.jpg") #original image
rows,cols,ch = img.shape
#pts1 = np.float32([[185,9],[304,80],[290, 134],[163,64]]) #ficou legal 6e.jpg
### Coletando os pontos
pts1 = np.float32(box)
### Draw the vertices on the original image
for (x, y) in pts1:
cv2.circle(img, (int(x), int(y)), 5, (0, 0, 255), -1)
ratio= 1.6
moldH=math.sqrt((pts1[2][0]-pts1[1][0])*(pts1[2][0]-pts1[1][0])+(pts1[2][1]-pts1[1][1])*(pts1[2][1]-pts1[1][1]))
moldW=ratio*moldH
pts2 = np.float32([[pts1[0][0],pts1[0][1]], [pts1[0][0]+moldW, pts1[0][1]], [pts1[0][0]+moldW, pts1[0][1]+moldH], [pts1[0][0], pts1[0][1]+moldH]])
#print('cardH: ',cardH,cardW)
M = cv2.getPerspectiveTransform(pts1,pts2)
print('M:', M)
print('pts1:', pts1)
print('pts2:', pts2)
offsetSize= 320
transformed = np.zeros((int(moldW+offsetSize), int(moldH+offsetSize)), dtype=np.uint8)
dst = cv2.warpPerspective(img, M, transformed.shape)
plt.subplot(121),plt.imshow(img),plt.title('Input')
plt.subplot(122),plt.imshow(dst),plt.title('Output')
plt.show()
And I got this:
No perspective correction. I have a lot of information like vertices, the correct size of the reference. Is it possible to do a mathematical correction based on quadrangle vertices, like a regression? Not necessarily correcting the image directly, unless there is a good method to correct the perspective image. Or maybe a different approach based on math? Thanks for your patience.
For Christoph:
This is the result position too:
pts1: [[ 9. 51.]
[392. 56.]
[388. 336.]
[ 5. 331.]]
An exciting animation was posted on twitter recently: https://twitter.com/thomas_rackow/status/1392509885883944960.
One of the authors explained in this Jupyter Notebook https://nbviewer.jupyter.org/github/koldunovn/FESOM_SST_shaded_by_U/blob/main/FESOM_SST_shaded_by_U.ipynb
how a frame is created.
Related to the simple code displayed by this notebook, my question is: when we call imshow twice for the same ax:
ax.imshow(np.flipud(sst.sst.values), cmap=cm.RdBu_r, vmin=12, vmax=24)
ax.imshow(np.flipud(u.u_surf.values), alpha=0.3, cmap=cm.gray, vmin=-.3, vmax=0.3)
what operations performs matplotlib, behind the scenes, to get a layered image?
I worked with alpha blending in Open CV - Python, but here it starts with two arrays of the same shape (1000, 1000), and via ax.imshow, called twice for the two arrays, it displays the resulting image. I'd like to know how is it possible. What arithmetic operations between images are involved?
I searched the matplotlib github repository to understand what's going on, but I couldn't find something relevant.
I succeeded to illustrate that the two imshow(s) hide the alpha-blending of the two images.
import numpy as np
import xarray as xr
import matplotlib.pyplot as plt
import matplotlib.cm as cm
sst = xr.open_dataset('GF_FESOM2_testdata/sst.nc')
u = xr.open_dataset('GF_FESOM2_testdata/u_surf.nc')
v = xr.open_dataset('GF_FESOM2_testdata/v_surf.nc')
#Define the heatmap from SST-data and extract the array representing it as an image:
fig1, ax1 = plt.subplots(1, 1,
constrained_layout=True,
figsize=(10, 10))
f1 = ax1.imshow(np.flipud(sst.sst.values), cmap=cm.RdBu_r, vmin=12, vmax=24)
ax1.axis('off');
arr1 = f1.make_image('notebook')[0] #array representing the above image
#Repeat the same procedure for u-data set:
fig2, ax2 = plt.subplots(1, 1,
constrained_layout=True,
figsize=(10, 10))
f2 = ax2.imshow(np.flipud(u.u_surf.values), cmap=cm.gray, vmin=-0.3, vmax=0.3)
ax2.axis('off');
arr2 = f2.make_image("notebook")[0]
#alpha blending of the two images amounts to a convex combination of the associated arrays
alpha1= 1 # background image alpha
alpha2 = 0.3 #foreground image alpha
arr = np.asarray((alpha2*arr2 + alpha1*(1-alpha2)*arr1)/(alpha2+alpha1*(1-alpha2)), dtype=np.uint8)
fig, ax = plt.subplots(1, 1,
constrained_layout=True,
figsize=(10, 10))
ax.imshow(np.flipud(arr))
ax.axis('off');
I'm trying to create a plot using pyplot that has a discontinuous x-axis. The usual way this is drawn is that the axis will have something like this:
(values)----//----(later values)
where the // indicates that you're skipping everything between (values) and (later values).
I haven't been able to find any examples of this, so I'm wondering if it's even possible. I know you can join data over a discontinuity for, eg, financial data, but I'd like to make the jump in the axis more explicit. At the moment I'm just using subplots but I'd really like to have everything end up on the same graph in the end.
Paul's answer is a perfectly fine method of doing this.
However, if you don't want to make a custom transform, you can just use two subplots to create the same effect.
Rather than put together an example from scratch, there's an excellent example of this written by Paul Ivanov in the matplotlib examples (It's only in the current git tip, as it was only committed a few months ago. It's not on the webpage yet.).
This is just a simple modification of this example to have a discontinuous x-axis instead of the y-axis. (Which is why I'm making this post a CW)
Basically, you just do something like this:
import matplotlib.pylab as plt
import numpy as np
# If you're not familiar with np.r_, don't worry too much about this. It's just
# a series with points from 0 to 1 spaced at 0.1, and 9 to 10 with the same spacing.
x = np.r_[0:1:0.1, 9:10:0.1]
y = np.sin(x)
fig,(ax,ax2) = plt.subplots(1, 2, sharey=True)
# plot the same data on both axes
ax.plot(x, y, 'bo')
ax2.plot(x, y, 'bo')
# zoom-in / limit the view to different portions of the data
ax.set_xlim(0,1) # most of the data
ax2.set_xlim(9,10) # outliers only
# hide the spines between ax and ax2
ax.spines['right'].set_visible(False)
ax2.spines['left'].set_visible(False)
ax.yaxis.tick_left()
ax.tick_params(labeltop='off') # don't put tick labels at the top
ax2.yaxis.tick_right()
# Make the spacing between the two axes a bit smaller
plt.subplots_adjust(wspace=0.15)
plt.show()
To add the broken axis lines // effect, we can do this (again, modified from Paul Ivanov's example):
import matplotlib.pylab as plt
import numpy as np
# If you're not familiar with np.r_, don't worry too much about this. It's just
# a series with points from 0 to 1 spaced at 0.1, and 9 to 10 with the same spacing.
x = np.r_[0:1:0.1, 9:10:0.1]
y = np.sin(x)
fig,(ax,ax2) = plt.subplots(1, 2, sharey=True)
# plot the same data on both axes
ax.plot(x, y, 'bo')
ax2.plot(x, y, 'bo')
# zoom-in / limit the view to different portions of the data
ax.set_xlim(0,1) # most of the data
ax2.set_xlim(9,10) # outliers only
# hide the spines between ax and ax2
ax.spines['right'].set_visible(False)
ax2.spines['left'].set_visible(False)
ax.yaxis.tick_left()
ax.tick_params(labeltop='off') # don't put tick labels at the top
ax2.yaxis.tick_right()
# Make the spacing between the two axes a bit smaller
plt.subplots_adjust(wspace=0.15)
# This looks pretty good, and was fairly painless, but you can get that
# cut-out diagonal lines look with just a bit more work. The important
# thing to know here is that in axes coordinates, which are always
# between 0-1, spine endpoints are at these locations (0,0), (0,1),
# (1,0), and (1,1). Thus, we just need to put the diagonals in the
# appropriate corners of each of our axes, and so long as we use the
# right transform and disable clipping.
d = .015 # how big to make the diagonal lines in axes coordinates
# arguments to pass plot, just so we don't keep repeating them
kwargs = dict(transform=ax.transAxes, color='k', clip_on=False)
ax.plot((1-d,1+d),(-d,+d), **kwargs) # top-left diagonal
ax.plot((1-d,1+d),(1-d,1+d), **kwargs) # bottom-left diagonal
kwargs.update(transform=ax2.transAxes) # switch to the bottom axes
ax2.plot((-d,d),(-d,+d), **kwargs) # top-right diagonal
ax2.plot((-d,d),(1-d,1+d), **kwargs) # bottom-right diagonal
# What's cool about this is that now if we vary the distance between
# ax and ax2 via f.subplots_adjust(hspace=...) or plt.subplot_tool(),
# the diagonal lines will move accordingly, and stay right at the tips
# of the spines they are 'breaking'
plt.show()
I see many suggestions for this feature but no indication that it's been implemented. Here is a workable solution for the time-being. It applies a step-function transform to the x-axis. It's a lot of code, but it's fairly simple since most of it is boilerplate custom scale stuff. I have not added any graphics to indicate the location of the break, since that is a matter of style. Good luck finishing the job.
from matplotlib import pyplot as plt
from matplotlib import scale as mscale
from matplotlib import transforms as mtransforms
import numpy as np
def CustomScaleFactory(l, u):
class CustomScale(mscale.ScaleBase):
name = 'custom'
def __init__(self, axis, **kwargs):
mscale.ScaleBase.__init__(self)
self.thresh = None #thresh
def get_transform(self):
return self.CustomTransform(self.thresh)
def set_default_locators_and_formatters(self, axis):
pass
class CustomTransform(mtransforms.Transform):
input_dims = 1
output_dims = 1
is_separable = True
lower = l
upper = u
def __init__(self, thresh):
mtransforms.Transform.__init__(self)
self.thresh = thresh
def transform(self, a):
aa = a.copy()
aa[a>self.lower] = a[a>self.lower]-(self.upper-self.lower)
aa[(a>self.lower)&(a<self.upper)] = self.lower
return aa
def inverted(self):
return CustomScale.InvertedCustomTransform(self.thresh)
class InvertedCustomTransform(mtransforms.Transform):
input_dims = 1
output_dims = 1
is_separable = True
lower = l
upper = u
def __init__(self, thresh):
mtransforms.Transform.__init__(self)
self.thresh = thresh
def transform(self, a):
aa = a.copy()
aa[a>self.lower] = a[a>self.lower]+(self.upper-self.lower)
return aa
def inverted(self):
return CustomScale.CustomTransform(self.thresh)
return CustomScale
mscale.register_scale(CustomScaleFactory(1.12, 8.88))
x = np.concatenate((np.linspace(0,1,10), np.linspace(9,10,10)))
xticks = np.concatenate((np.linspace(0,1,6), np.linspace(9,10,6)))
y = np.sin(x)
plt.plot(x, y, '.')
ax = plt.gca()
ax.set_xscale('custom')
ax.set_xticks(xticks)
plt.show()
Check the brokenaxes package:
import matplotlib.pyplot as plt
from brokenaxes import brokenaxes
import numpy as np
fig = plt.figure(figsize=(5,2))
bax = brokenaxes(
xlims=((0, .1), (.4, .7)),
ylims=((-1, .7), (.79, 1)),
hspace=.05
)
x = np.linspace(0, 1, 100)
bax.plot(x, np.sin(10 * x), label='sin')
bax.plot(x, np.cos(10 * x), label='cos')
bax.legend(loc=3)
bax.set_xlabel('time')
bax.set_ylabel('value')
A very simple hack is to
scatter plot rectangles over the axes' spines and
draw the "//" as text at that position.
Worked like a charm for me:
# FAKE BROKEN AXES
# plot a white rectangle on the x-axis-spine to "break" it
xpos = 10 # x position of the "break"
ypos = plt.gca().get_ylim()[0] # y position of the "break"
plt.scatter(xpos, ypos, color='white', marker='s', s=80, clip_on=False, zorder=100)
# draw "//" on the same place as text
plt.text(xpos, ymin-0.125, r'//', fontsize=label_size, zorder=101, horizontalalignment='center', verticalalignment='center')
Example Plot:
For those interested, I've expanded upon #Paul's answer and added it to the matplotlib wrapper proplot. It can do axis "jumps", "speedups", and "slowdowns".
There is no way currently to add "crosses" that indicate the discrete jump like in Joe's answer, but I plan to add this in the future. I also plan to add a default "tick locator" that sets sensible default tick locations depending on the CutoffScale arguments.
Adressing Frederick Nord's question how to enable parallel orientation of the diagonal "breaking" lines when using a gridspec with ratios unequal 1:1, the following changes based on the proposals of Paul Ivanov and Joe Kingtons may be helpful. Width ratio can be varied using variables n and m.
import matplotlib.pylab as plt
import numpy as np
import matplotlib.gridspec as gridspec
x = np.r_[0:1:0.1, 9:10:0.1]
y = np.sin(x)
n = 5; m = 1;
gs = gridspec.GridSpec(1,2, width_ratios = [n,m])
plt.figure(figsize=(10,8))
ax = plt.subplot(gs[0,0])
ax2 = plt.subplot(gs[0,1], sharey = ax)
plt.setp(ax2.get_yticklabels(), visible=False)
plt.subplots_adjust(wspace = 0.1)
ax.plot(x, y, 'bo')
ax2.plot(x, y, 'bo')
ax.set_xlim(0,1)
ax2.set_xlim(10,8)
# hide the spines between ax and ax2
ax.spines['right'].set_visible(False)
ax2.spines['left'].set_visible(False)
ax.yaxis.tick_left()
ax.tick_params(labeltop='off') # don't put tick labels at the top
ax2.yaxis.tick_right()
d = .015 # how big to make the diagonal lines in axes coordinates
# arguments to pass plot, just so we don't keep repeating them
kwargs = dict(transform=ax.transAxes, color='k', clip_on=False)
on = (n+m)/n; om = (n+m)/m;
ax.plot((1-d*on,1+d*on),(-d,d), **kwargs) # bottom-left diagonal
ax.plot((1-d*on,1+d*on),(1-d,1+d), **kwargs) # top-left diagonal
kwargs.update(transform=ax2.transAxes) # switch to the bottom axes
ax2.plot((-d*om,d*om),(-d,d), **kwargs) # bottom-right diagonal
ax2.plot((-d*om,d*om),(1-d,1+d), **kwargs) # top-right diagonal
plt.show()
This is a hacky but pretty solution for x-axis breaks.
The solution is based on https://matplotlib.org/stable/gallery/subplots_axes_and_figures/broken_axis.html, which gets rid of the problem with positioning the break above the spine, solved by How can I plot points so they appear over top of the spines with matplotlib?
from matplotlib.patches import Rectangle
import matplotlib.pyplot as plt
def axis_break(axis, xpos=[0.1, 0.125], slant=1.5):
d = slant # proportion of vertical to horizontal extent of the slanted line
anchor = (xpos[0], -1)
w = xpos[1] - xpos[0]
h = 1
kwargs = dict(marker=[(-1, -d), (1, d)], markersize=12, zorder=3,
linestyle="none", color='k', mec='k', mew=1, clip_on=False)
axis.add_patch(Rectangle(
anchor, w, h, fill=True, color="white",
transform=axis.transAxes, clip_on=False, zorder=3)
)
axis.plot(xpos, [0, 0], transform=axis.transAxes, **kwargs)
fig, ax = plt.subplots(1,1)
plt.plot(np.arange(10))
axis_break(ax, xpos=[0.1, 0.12], slant=1.5)
axis_break(ax, xpos=[0.3, 0.31], slant=-10)
if you want to replace an axis label, this would do the trick:
from matplotlib import ticker
def replace_pos_with_label(fig, pos, label, axis):
fig.canvas.draw() # this is needed to set up the x-ticks
labs = axis.get_xticklabels()
labels = []
locs = []
for text in labs:
x = text._x
lab = text._text
if x == pos:
lab = label
labels.append(lab)
locs.append(x)
axis.xaxis.set_major_locator(ticker.FixedLocator(locs))
axis.set_xticklabels(labels)
fig, ax = plt.subplots(1,1)
plt.plot(np.arange(10))
replace_pos_with_label(fig, 0, "-10", axis=ax)
replace_pos_with_label(fig, 6, "$10^{4}$", axis=ax)
axis_break(ax, xpos=[0.1, 0.12], slant=2)
I am generating 2D arrays on log-spaced axes (for instance, the x pixel coordinates are generated using logspace(log10(0.95), log10(2.08), n).
I want to display the image using a plain old imshow, in its native resolution and scaling (I don't need to stretch it; the data itself is already log scaled), but I want to add ticks, labels, lines that are in the correct place on the log axes. How do I do this?
Ideally I could just use commands line axvline(1.5) and the line would be in the correct place (58% from the left), but if the only way is to manually translate between logscale coordinates and image coordinates, that's ok, too.
For linear axes, using extents= in the call to imshow does what I want, but I don't see a way to do the same thing with a log axis.
Example:
from matplotlib.colors import LogNorm
x = logspace(log10(10), log10(1000), 5)
imshow(vstack((x,x)), extent=[10, 1000, 0, 100], cmap='gray', norm=LogNorm(), interpolation='nearest')
axvline(100, color='red')
This example does not work, because extent= only applies to linear scales, so when you do axvline at 100, it does not appear in the center. I'd like the x axis to show 10, 100, 1000, and axvline(100) to put a line in the center at the 100 point, while the pixels remain equally spaced.
In my view, it is better to use pcolor and regular (non-converted) x and y values. pcolor gives you more flexibility and regular x and y axis are less confusing.
import pylab as plt
import numpy as np
from matplotlib.colors import LogNorm
from matplotlib.ticker import LogFormatterMathtext
x=np.logspace(1, 3, 6)
y=np.logspace(0, 2,3)
X,Y=np.meshgrid(x,y)
z = np.logspace(np.log10(10), np.log10(1000), 5)
Z=np.vstack((z,z))
im = plt.pcolor(X,Y,Z, cmap='gray', norm=LogNorm())
plt.axvline(100, color='red')
plt.xscale('log')
plt.yscale('log')
plt.colorbar(im, orientation='horizontal',format=LogFormatterMathtext())
plt.show()
As pcolor is slow, a faster solution is to use pcolormesh instead.
im = plt.pcolormesh(X,Y,Z, cmap='gray', norm=LogNorm())
Actually, it works fine. I'm confused.
Previously I was getting errors about "Images are not supported on non-linear axes" which is why I asked this question. But now when I try it, it works:
import matplotlib.pyplot as plt
import numpy as np
x = np.logspace(1, 3, 5)
y = np.linspace(0, 2, 3)
z = np.linspace(0, 1, 4)
Z = np.vstack((z, z))
plt.imshow(Z, extent=[10, 1000, 0, 1], cmap='gray')
plt.xscale('log')
plt.axvline(100, color='red')
plt.show()
This is better than pcolor() and pcolormesh() because
it's not insanely slow and
is interpolated nicely without misleading artifacts when the image is not shown at native resolution.
To display imshow with abscisse log scale:
ax = fig.add_subplot(nrow, ncol, i+1)
ax.set_xscale('log')