I encountered this question in an interview and could not figure it out. I believe it has a dynamic programming solution but it eludes me.
Given a number of bricks, output the total number of 2d pyramids possible, where a pyramid is defined as any structure where a row of bricks has strictly less bricks than the row below it. You do not have to use all the bricks.
A brick is simply a square, the number of bricks in a row is the only important bit of information.
Really stuck with this one, I thought it would be easy to solve each problem 1...n iteratively and sum. But coming up with the number of pyramids possible with exactly i bricks is evading me.
example, n = 6
X
XX
X
XX XXX
X
XXX XXXX
XX X
XXX XXXX XXXXX
X
XX XX X
XXX XXXX XXXXX XXXXXX
So the answer is 13 possible pyramids from 6 bricks.
edit
I am positive this is a dynamic programming problem, because it makes sense to (once you've determined the first row) simply look to the index in your memorized array of your remainder of bricks to see how many pyramids fit atop.
It also makes sense to consider bottom rows of width at least n/2 because we can't have more bricks atop than on the bottom row EXCEPT and this is where I lose it and my mind falls apart, in certain (few cases) you can I.e. N = 10
X
XX
XXX
XXXX
Now the bottom row has 4 but there are 6 left to place on top
But with n = 11 we cannot have a bottom row with less than n/2 bricks. There is another wierd inconsistency like that with n = 4 where we cannot have a bottom row of n/2 = 2 bricks.
Let's choose a suitable definition:
f(n, m) = # pyramids out of n bricks with base of size < m
The answer you are looking for now is (given that N is your input number of bricks):
f(N, N+1) - 1
Let's break that down:
The first N is obvious: that's your number of bricks.
Your bottom row will contain at most N bricks (because that's all you have), so N+1 is a sufficient lower bound.
Finally, the - 1 is there because technically the empty pyramid is also a pyramid (and will thus be counted) but you exclude that from your solutions.
The base cases are simple:
f(n, 0) = 1 for any n >= 0
f(0, m) = 1 for any m >= 0
In both cases, it's the empty pyramid that we are counting here.
Now, all we need still is a recursive formula for the general case.
Let's assume we are given n and m and choose to have i bricks on the bottom layer. What can we place on top of this layer? A smaller pyramid, for which we have n - i bricks left and whose base has size < i. This is exactly f(n - i, i).
What is the range for i? We can choose an empty row so i >= 0. Obviously, i <= n because we have only n bricks. But also, i <= m - 1, by definition of m.
This leads to the recursive expression:
f(n, m) = sum f(n - i, i) for 0 <= i <= min(n, m - 1)
You can compute f recursively, but using dynamic programming it will be faster of course. Storing the results matrix is straightforward though, so I leave that up to you.
Coming back to the original claim that f(N, N+1)-1 is the answer you are looking for, it doesn't really matter which value to choose for m as long as it is > N. Based on the recursive formula it's easy to show that f(N, N + 1) = f(N, N + k) for every k >= 1:
f(N, N + k) = sum f(N - i, i) for 0 <= i <= min(N, N + k - 1)
= sum f(N - i, i) for 0 <= i <= N
= sum f(N - i, i) for 0 <= i <= min(N, N + 1 - 1)
In how many ways can you build a pyramid of width n? By putting any pyramid of width n-1 or less anywhere atop the layer of n bricks. So if p(n) is the number of pyramids of width n, then p(n) = sum [m=1 to n-1] (p(m) * c(n, m)), where c(n, m) is the number of ways you can place a layer of width m atop a layer of width n (I trust that you can work that one out yourself).
This, however, doesn't place a limitation on the number of bricks. Generally, in DP, any resource limitation must be modeled as a separate dimension. So your problem is now p(n, b): "How many pyramids can you build of width n with a total of b bricks"? In the recursive formula, for each possible way of building a smaller pyramid atop your current one, you need to refer to the correct amount of remaining bricks. I leave it as a challenge for you to work out the recursive formula; let me know if you need any hints.
You can think of your recursion as: given x bricks left where you used n bricks on last row, how many pyramids can you build. Now you can fill up rows from either top to bottom row or bottom to top row. I will explain the former case.
Here the recursion might look something like this (left is number of bricks left and last is number of bricks used on last row)
f(left,last)=sum (1+f(left-i,i)) for i in range [last+1,left] inclusive.
Since when you use i bricks on current row you will have left-i bricks left and i will be number of bricks used on this row.
Code:
int calc(int left, int last) {
int total=0;
if(left<=0) return 0; // terminal case, no pyramid with no brick
for(int i=last+1; i<=left; i++) {
total+=1+calc(left-i,i);
}
return total;
}
I will leave it to you to implement memoized or bottom-up dp version. Also you may want to start from bottom row and fill up upper rows in pyramid.
Since we are asked to count pyramids of any cardinality less than or equal to n, we may consider each cardinality in turn (pyramids of 1 element, 2 elements, 3...etc.) and sum them up. But in how many different ways can we compose a pyramid from k elements? The same number as the count of distinct partitions of k (for example, for k = 6, we can have (6), (1,5), (2,4), and (1,2,3)). A generating function/recurrence for the count of distinct partitions is described in Wikipedia and a sequence at OEIS.
Recurrence, based on the Pentagonal number Theorem:
q(k) = ak + q(k − 1) + q(k − 2) − q(k − 5) − q(k − 7) + q(k − 12) + q(k − 15) − q(k − 22)...
where ak is (−1)^(abs(m)) if k = 3*m^2 − m for some integer m and is 0 otherwise.
(The subtracted coefficients are generalized pentagonal numbers.)
Since the recurrence described in Wikipedia obliges the calculation of all preceding q(n)'s to arrive at a larger q(n), we can simply sum the results along the way to obtain our result.
JavaScript code:
function numPyramids(n){
var distinctPartitions = [1,1],
pentagonals = {},
m = _m = 1,
pentagonal_m = 2,
result = 1;
while (pentagonal_m / 2 <= n){
pentagonals[pentagonal_m] = Math.abs(_m);
m++;
_m = m % 2 == 0 ? -m / 2 : Math.ceil(m / 2);
pentagonal_m = _m * (3 * _m - 1);
}
for (var k=2; k<=n; k++){
distinctPartitions[k] = pentagonals[k] ? Math.pow(-1,pentagonals[k]) : 0;
var cs = [1,1,-1,-1],
c = 0;
for (var i in pentagonals){
if (i / 2 > k)
break;
distinctPartitions[k] += cs[c]*distinctPartitions[k - i / 2];
c = c == 3 ? 0 : c + 1;
}
result += distinctPartitions[k];
}
return result;
}
console.log(numPyramids(6)); // 13
Related
It's usually easy to calculate the time complexity for the best case and the worst case, but when it comes to the average case especially when there's a probability p given, I don't know where to start.
Let's look at the following algorithm to compute the product of all the elements in a matrix:
int computeProduct(int[][] A, int m, int n) {
int product = 1;
for (int i = 0; i < m; i++ {
for (int j = 0; j < n; j++) {
if (A[i][j] == 0) return 0;
product = product * A[i][j];
}
}
return product;
}
Suppose p is the probability of A[i][j] being 0 (i.e. the algorithm terminates there, return 0); how do we derive the average case time complexity for this algorithm?
Let’s consider a related problem. Imagine you have a coin that flips heads with probability p. How many times, on expectation, do you need to flip the coin before it comes up heads? The answer is 1/p, since
There’s a p chance that you need one flip.
There’s a p(1-p) chance that you need two flips (the first flip has to go tails and the second has to go heads).
There’s a p(1-p)^2 chance that you need three flips (the first two flips need to go tails and the third has to go heads)
...
There’s a p(1-p)^(k-1) chance that you need k flips (the first k-1 flips need to go tails and the kth needs to go heads.)
So this means the expected value of the number of flips is
p + 2p(1 - p) + 3p(1 - p)^2 + 4p(1 - p)^3 + ...
= p(1(1 - p)^0 + 2(1 - p)^1 + 3(1 - p)^2 + ...)
So now we need to work out what this summation is. The general form is
p sum from k = 1 to infinity (k(1 - p)^k).
Rather than solving this particular summation, let's make this more general. Let x be some variable that, later, we'll set equal to 1 - p, but which for now we'll treat as a free value. Then we can rewrite the above summation as
p sum from k = 1 to infinity (kx^(k-1)).
Now for a cute trick: notice that the inside of this expression is the derivative of x^k with respect to x. Therefore, this sum is
p sum from k = 1 to infinity (d/dx x^k).
The derivative is a linear operator, so we can move it out to the front:
p d/dx sum from k = 1 to infinity (x^k)
That inner sum (x + x^2 + x^3 + ...) is the Taylor series for 1 / (1 - x) - 1, so we can simplify this to get
p d/dx (1 / (1 - x) - 1)
= p / (1 - x)^2
And since we picked x = 1 - p, this simplifies to
p / (1 - (1 - p))^2
= p / p^2
= 1 / p
Whew! That was a long derivation. But it shows that the expected number of coin tosses needed is 1/p.
Now, in your case, your algorithm can be thought of as tossing mn coins that come up heads with probability p and stopping if any of them come up heads. Surely, the expected number of coins you’d need to toss won’t be more than the case where you’re allowed to flip infinitely often, so your expected runtime is at most O(1 / p) (assuming p > 0).
If we assume that p is independent of m and n, then we can notice that at after some initial growth, each added term into our summation as we increase the number of flips is exponentially lower than the previous ones. More specifically, after adding in roughly logarithmically many terms into the sum we’ll be off from the total in the case of the infinite summation. Therefore, provided that mn is roughly larger than Θ(log p), the sum ends up being Θ(1 / p). So in a big-O sense, if mn is independent of p, the runtime is Θ(1 / p).
Consider a binary sequence b of length N. Initially, all the bits are set to 0. We define a flip operation with 2 arguments, flip(L,R), such that:
All bits with indices between L and R are "flipped", meaning a bit with value 1 becomes a bit with value 0 and vice-versa. More exactly, for all i in range [L,R]: b[i] = !b[i].
Nothing happens to bits outside the specified range.
You are asked to determine the number of possible different sequences that can be obtained using exactly K flip operations modulo an arbitrary given number, let's call it MOD.
More specifically, each test contains on the first line a number T, the number of queries to be given. Then there are T queries, each one being of the form N, K, MOD with the meaning from above.
1 ≤ N, K ≤ 300 000
T ≤ 250
2 ≤ MOD ≤ 1 000 000 007
Sum of all N-s in a test is ≤ 600 000
time limit: 2 seconds
memory limit: 65536 kbytes
Example :
Input :
1
2 1 1000
Output :
3
Explanation :
There is a single query. The initial sequence is 00. We can do the following operations :
flip(1,1) ⇒ 10
flip(2,2) ⇒ 01
flip(1,2) ⇒ 11
So there are 3 possible sequences that can be generated using exactly 1 flip.
Some quick observations that I've made, although I'm not sure they are totally correct :
If K is big enough, that is if we have a big enough number of flips at our disposal, we should be able to obtain 2n sequences.
If K=1, then the result we're looking for is N(N+1)/2. It's also C(n,1)+C(n,2), where C is the binomial coefficient.
Currently trying a brute force approach to see if I can spot a rule of some kind. I think this is a sum of some binomial coefficients, but I'm not sure.
I've also come across a somewhat simpler variant of this problem, where the flip operation only flips a single specified bit. In that case, the result is
C(n,k)+C(n,k-2)+C(n,k-4)+...+C(n,(1 or 0)). Of course, there's the special case where k > n, but it's not a huge difference. Anyway, it's pretty easy to understand why that happens.I guess it's worth noting.
Here are a few ideas:
We may assume that no flip operation occurs twice (otherwise, we can assume that it did not happen). It does affect the number of operations, but I'll talk about it later.
We may assume that no two segments intersect. Indeed, if L1 < L2 < R1 < R2, we can just do the (L1, L2 - 1) and (R1 + 1, R2) flips instead. The case when one segment is inside the other is handled similarly.
We may also assume that no two segments touch each other. Otherwise, we can glue them together and reduce the number of operations.
These observations give the following formula for the number of different sequences one can obtain by flipping exactly k segments without "redundant" flips: C(n + 1, 2 * k) (we choose 2 * k ends of segments. They are always different. The left end is exclusive).
If we had perform no more than K flips, the answer would be sum for k = 0...K of C(n + 1, 2 * k)
Intuitively, it seems that its possible to transform the sequence of no more than K flips into a sequence of exactly K flips (for instance, we can flip the same segment two more times and add 2 operations. We can also split a segment of more than two elements into two segments and add one operation).
By running the brute force search (I know that it's not a real proof, but looks correct combined with the observations mentioned above) that the answer this sum minus 1 if n or k is equal to 1 and exactly the sum otherwise.
That is, the result is C(n + 1, 0) + C(n + 1, 2) + ... + C(n + 1, 2 * K) - d, where d = 1 if n = 1 or k = 1 and 0 otherwise.
Here is code I used to look for patterns running a brute force search and to verify that the formula is correct for small n and k:
reachable = set()
was = set()
def other(c):
"""
returns '1' if c == '0' and '0' otherwise
"""
return '0' if c == '1' else '1'
def flipped(s, l, r):
"""
Flips the [l, r] segment of the string s and returns the result
"""
res = s[:l]
for i in range(l, r + 1):
res += other(s[i])
res += s[r + 1:]
return res
def go(xs, k):
"""
Exhaustive search. was is used to speed up the search to avoid checking the
same string with the same number of remaining operations twice.
"""
p = (xs, k)
if p in was:
return
was.add(p)
if k == 0:
reachable.add(xs)
return
for l in range(len(xs)):
for r in range(l, len(xs)):
go(flipped(xs, l, r), k - 1)
def calc_naive(n, k):
"""
Counts the number of reachable sequences by running an exhaustive search
"""
xs = '0' * n
global reachable
global was
was = set()
reachable = set()
go(xs, k)
return len(reachable)
def fact(n):
return 1 if n == 0 else n * fact(n - 1)
def cnk(n, k):
if k > n:
return 0
return fact(n) // fact(k) // fact(n - k)
def solve(n, k):
"""
Uses the formula shown above to compute the answer
"""
res = 0
for i in range(k + 1):
res += cnk(n + 1, 2 * i)
if k == 1 or n == 1:
res -= 1
return res
if __name__ == '__main__':
# Checks that the formula gives the right answer for small values of n and k
for n in range(1, 11):
for k in range(1, 11):
assert calc_naive(n, k) == solve(n, k)
This solution is much better than the exhaustive search. For instance, it can run in O(N * K) time per test case if we compute the coefficients using Pascal's triangle. Unfortunately, it is not fast enough. I know how to solve it more efficiently for prime MOD (using Lucas' theorem), but O do not have a solution in general case.
Multiplicative modular inverses can't solve this problem immediately as k! or (n - k)! may not have an inverse modulo MOD.
Note: I assumed that C(n, m) is defined for all non-negative n and m and is equal to 0 if n < m.
I think I know how to solve it for an arbitrary MOD now.
Let's factorize the MOD into prime factors p1^a1 * p2^a2 * ... * pn^an. Now can solve this problem for each prime factor independently and combine the result using the Chinese remainder theorem.
Let's fix a prime p. Let's assume that p^a|MOD (that is, we need to get the result modulo p^a). We can precompute all p-free parts of the factorial and the maximum power of p that divides the factorial for all 0 <= n <= N in linear time using something like this:
powers = [0] * (N + 1)
p_free = [i for i in range(N + 1)]
p_free[0] = 1
for cur_p in powers of p <= N:
i = cur_p
while i < N:
powers[i] += 1
p_free[i] /= p
i += cur_p
Now the p-free part of the factorial is the product of p_free[i] for all i <= n and the power of p that divides n! is the prefix sum of the powers.
Now we can divide two factorials: the p-free part is coprime with p^a so it always has an inverse. The powers of p are just subtracted.
We're almost there. One more observation: we can precompute the inverses of p-free parts in linear time. Let's compute the inverse for the p-free part of N! using Euclid's algorithm. Now we can iterate over all i from N to 0. The inverse of the p-free part of i! is the inverse for i + 1 times p_free[i] (it's easy to prove it if we rewrite the inverse of the p-free part as a product using the fact that elements coprime with p^a form an abelian group under multiplication).
This algorithm runs in O(N * number_of_prime_factors + the time to solve the system using the Chinese remainder theorem + sqrt(MOD)) time per test case. Now it looks good enough.
You're on a good path with binomial-coefficients already. There are several factors to consider:
Think of your number as a binary-string of length n. Now we can create another array counting the number of times a bit will be flipped:
[0, 1, 0, 0, 1] number
[a, b, c, d, e] number of flips.
But even numbers of flips all lead to the same result and so do all odd numbers of flips. So basically the relevant part of the distribution can be represented %2
Logical next question: How many different combinations of even and odd values are available. We'll take care of the ordering later on, for now just assume the flipping-array is ordered descending for simplicity. We start of with k as the only flipping-number in the array. Now we want to add a flip. Since the whole flipping-array is used %2, we need to remove two from the value of k to achieve this and insert them into the array separately. E.g.:
[5, 0, 0, 0] mod 2 [1, 0, 0, 0]
[3, 1, 1, 0] [1, 1, 1, 0]
[4, 1, 0, 0] [0, 1, 0, 0]
As the last example shows (remember we're operating modulo 2 in the final result), moving a single 1 doesn't change the number of flips in the final outcome. Thus we always have to flip an even number bits in the flipping-array. If k is even, so will the number of flipped bits be and same applies vice versa, no matter what the value of n is.
So now the question is of course how many different ways of filling the array are available? For simplicity we'll start with mod 2 right away.
Obviously we start with 1 flipped bit, if k is odd, otherwise with 1. And we always add 2 flipped bits. We can continue with this until we either have flipped all n bits (or at least as many as we can flip)
v = (k % 2 == n % 2) ? n : n - 1
or we can't spread k further over the array.
v = k
Putting this together:
noOfAvailableFlips:
if k < n:
return k
else:
return (k % 2 == n % 2) ? n : n - 1
So far so well, there are always v / 2 flipping-arrays (mod 2) that differ by the number of flipped bits. Now we come to the next part permuting these arrays. This is just a simple permutation-function (permutation with repetition to be precise):
flipArrayNo(flippedbits):
return factorial(n) / (factorial(flippedbits) * factorial(n - flippedbits)
Putting it all together:
solutionsByFlipping(n, k):
res = 0
for i in [k % 2, noOfAvailableFlips(), step=2]:
res += flipArrayNo(i)
return res
This also shows that for sufficiently large numbers we can't obtain 2^n sequences for the simply reason that we can not arrange operations as we please. The number of flips that actually affect the outcome will always be either even or odd depending upon k. There's no way around this. The best result one can get is 2^(n-1) sequences.
For completeness, here's a dynamic program. It can deal easily with arbitrary modulo since it is based on sums, but unfortunately I haven't found a way to speed it beyond O(n * k).
Let a[n][k] be the number of binary strings of length n with k non-adjacent blocks of contiguous 1s that end in 1. Let b[n][k] be the number of binary strings of length n with k non-adjacent blocks of contiguous 1s that end in 0.
Then:
# we can append 1 to any arrangement of k non-adjacent blocks of contiguous 1's
# that ends in 1, or to any arrangement of (k-1) non-adjacent blocks of contiguous
# 1's that ends in 0:
a[n][k] = a[n - 1][k] + b[n - 1][k - 1]
# we can append 0 to any arrangement of k non-adjacent blocks of contiguous 1's
# that ends in either 0 or 1:
b[n][k] = b[n - 1][k] + a[n - 1][k]
# complete answer would be sum (a[n][i] + b[n][i]) for i = 0 to k
I wonder if the following observations might be useful: (1) a[n][k] and b[n][k] are zero when n < 2*k - 1, and (2) on the flip side, for values of k greater than ⌊(n + 1) / 2⌋ the overall answer seems to be identical.
Python code (full matrices are defined for simplicity, but I think only one row of each would actually be needed, space-wise, for a bottom-up method):
a = [[0] * 11 for i in range(0,11)]
b = [([1] + [0] * 10) for i in range(0,11)]
def f(n,k):
return fa(n,k) + fb(n,k)
def fa(n,k):
global a
if a[n][k] or n == 0 or k == 0:
return a[n][k]
elif n == 2*k - 1:
a[n][k] = 1
return 1
else:
a[n][k] = fb(n-1,k-1) + fa(n-1,k)
return a[n][k]
def fb(n,k):
global b
if b[n][k] or n == 0 or n == 2*k - 1:
return b[n][k]
else:
b[n][k] = fb(n-1,k) + fa(n-1,k)
return b[n][k]
def g(n,k):
return sum([f(n,i) for i in range(0,k+1)])
# example
print(g(10,10))
for i in range(0,11):
print(a[i])
print()
for i in range(0,11):
print(b[i])
I know the LCS problem need time ~ O(mn) where m and n are length of two sequence X and Y respectively. But my problem is a little bit easier so I expect a faster algorithm than ~O(mn).
Here is my problem:
Input:
a positive integer Q, two sequence X=x1,x2,x3.....xn and Y=y1,y2,y3...yn, both of length n.
Output:
True, if the length of the LCS of X and Y is at least n - Q;
False, otherwise.
The well-known algorithm costs O(n^2) here, but actually we can do better than that. Because whenever we eliminate as many as Q elements in either sequence without finding a common element, the result returns False. Someone said there should be an algorithm as good as O(Q*n), but I cannot figure out.
UPDATE:
Already found an answer!
I was told I can just calculate the diagonal block of the table c[i,j], because if |i-j|>Q, means there are already more than Q unmatched elements in both sequences. So we only need to calculate the c[i,j] when |i-j|<=Q.
Here is one possible way to do it:
1. Let's assume that f(prefix_len, deleted_cnt) is the leftmost position in Y such that prefix_len elements of X were already processed and exactly deleted_cnt of them were deleted. Obviously, there are only O(N * Q) states because deleted_cnt cannot exceed Q.
2. The base case is f(0, 0) = 0(nothing was processed, thus nothing was deleted).
3. Transitions:
a) Remove the current element: f(i + 1, j + 1) = min(f(i + 1, j + 1), f(i, j)).
b) Match the current element with the leftmost possible element from Y that is equal to it and located after f(i, j)(let's assume that it has index pos): f(i + 1, j) = min(f(i + 1, j), pos).
4. So the only question remaining is how to get the leftmost matching element located to the right from a given position. Let's precompute the following pairs: (position in Y, element of X) -> the leftmost occurrence of the element of Y equal to this element of X to the right from this position in Y and put them into a hash table. It looks like O(n^2). But is not. For a fixed position in Y, we never need to go further to the right from it than by Q + 1 positions. Why? If we go further, we skip more than Q elements! So we can use this fact to examine only O(N * Q) pairs and get desired time complexity. When we have this hash table, finding pos during the step 3 is just one hash table lookup. Here is a pseudo code for this step:
map = EmptyHashMap()
for i = 0 ... n - 1:
for j = i + 1 ... min(n - 1, i + q + 1)
map[(i, Y[j])] = min(map[(i, Y[j])], j)
Unfortunately, this solution uses hash tables so it has O(N * Q) time complexity on average, not in the worst case, but it should be feasible.
You can also say cost of the process to make the string equal must not be greater than Q.if it greater than Q than answer must be false.(EDIT DISTANCE PROBLEM)
Suppose of the of string x is m, and the size of string y is n, then we create a two dimensional array d[0..m][0..n], where d[i][j] denotes the edit distance between the i-length prefix of x and j-length prefix of y.
The computation of array d is done using dynamic programming, which uses the following recurrence:
d[i][0] = i , for i <= m
d[0][j] = j , for j <= n
d[i][j] = d[i - 1][j - 1], if s[i] == w[j],
d[i][j] = min(d[i - 1][j] + 1, d[i][j - 1] + 1, d[i - 1][j - 1] + 1), otherwise.
answer of LCS if m>n, m-dp[m][m-n]
You are given a number of dices n, each with a number of faces m. You roll all the n dices and note the sum of all the throws you get from rolling each dice. If you get a sum >= x, you win, otherwise you lose. Find the probability that you win.
I thought of generating all combinations of 1 to m ( of size n ) and keeping count of only those whose sum is more then x . Total no of ways are m^n
After that its just the divison of both.
Is there a better way ?
[EDIT: As noted by jpalacek, the time complexity was wrong -- I've now fixed this.]
You can solve this more efficiently with dynamic programming, by first changing it into the question:
How many ways can I get at least x from n dice?
Express this as f(x, n). Then it must be that
f(x, n) = sum(f(x - i, n - 1)) for all 1 <= i <= m.
I.e. if the first die has 1, the remaining n - 1 dice must add up to at least x - 1; if the first die has 2, the remaining n - 1 dice must add up to at least x - 2; and so on.
There are m terms in the sum, so if you memoise this function, it will be O(m^2*n^2), since it will be required to do this summing work at most (m * n) * n times (i.e. once per unique set of inputs to the function, assuming that the first parameter x <= m * n).
As a final step to get a probability, just divide the result of f(x, n) by the total number of possible outcomes, i.e. m^n.
Just to add up on #j_random_hacker's basically correct answer, you can make it even faster when you note that
f(x, n) = f(x-1, n) - f(x-m-1, n-1) + f(x-1, n-1) if x>m+1
This way, you'll only spend O(1) time calculating each of the f value.
//Passing curFace value will disallow duplicate combinations
//For 3 dices - and sum 8 - 2 4 2 and 2 2 4 are the same combination - so should be counted as one
int sums(int totSum,int noDices,int mFaces,int curFace,HashMap<String,Integer> map)
{
int count=0;
if (noDices<=0 || totSum<=0)
return 0;
if (noDices==1)
{
if (totSum>=1 & totSum<=mFaces)
return 1;
else
return 0;
}
if (map.containsKey(noDices+"-"+totSum))
return map.get(noDices+"-"+totSum);
for (int i=curFace;i<=mFaces;i++)
{
count+=sums(totSum-i,noDices-1,mFaces,i,map);
}
map.put(noDices+"-" +totSum,count);
return count;
}
Given a positive integer X, how can one partition it into N parts, each between A and B where A <= B are also positive integers? That is, write
X = X_1 + X_2 + ... + X_N
where A <= X_i <= B and the order of the X_is doesn't matter?
If you want to know the number of ways to do this, then you can use generating functions.
Essentially, you are interested in integer partitions. An integer partition of X is a way to write X as a sum of positive integers. Let p(n) be the number of integer partitions of n. For example, if n=5 then p(n)=7 corresponding to the partitions:
5
4,1
3,2
3,1,1
2,2,1
2,1,1,1
1,1,1,1,1
The the generating function for p(n) is
sum_{n >= 0} p(n) z^n = Prod_{i >= 1} ( 1 / (1 - z^i) )
What does this do for you? By expanding the right hand side and taking the coefficient of z^n you can recover p(n). Don't worry that the product is infinite since you'll only ever be taking finitely many terms to compute p(n). In fact, if that's all you want, then just truncate the product and stop at i=n.
Why does this work? Remember that
1 / (1 - z^i) = 1 + z^i + z^{2i} + z^{3i} + ...
So the coefficient of z^n is the number of ways to write
n = 1*a_1 + 2*a_2 + 3*a_3 +...
where now I'm thinking of a_i as the number of times i appears in the partition of n.
How does this generalize? Easily, as it turns out. From the description above, if you only want the parts of the partition to be in a given set A, then instead of taking the product over all i >= 1, take the product over only i in A. Let p_A(n) be the number of integer partitions of n whose parts come from the set A. Then
sum_{n >= 0} p_A(n) z^n = Prod_{i in A} ( 1 / (1 - z^i) )
Again, taking the coefficient of z^n in this expansion solves your problem. But we can go further and track the number of parts of the partition. To do this, add in another place holder q to keep track of how many parts we're using. Let p_A(n,k) be the number of integer partitions of n into k parts where the parts come from the set A. Then
sum_{n >= 0} sum_{k >= 0} p_A(n,k) q^k z^n = Prod_{i in A} ( 1 / (1 - q*z^i) )
so taking the coefficient of q^k z^n gives the number of integer partitions of n into k parts where the parts come from the set A.
How can you code this? The generating function approach actually gives you an algorithm for generating all of the solutions to the problem as well as a way to uniformly sample from the set of solutions. Once n and k are chosen, the product on the right is finite.
Here is a python solution to this problem, This is quite un-optimised but I have tried to keep it as simple as I can to demonstrate an iterative method of solving this problem.
The results of this method will commonly be a list of max values and min values with maybe 1 or 2 values inbetween. Because of this, there is a slight optimisation in there, (using abs) which will prevent the iterator constantly trying to find min values counting down from max and vice versa.
There are recursive ways of doing this that look far more elegant, but this will get the job done and hopefully give you an insite into a better solution.
SCRIPT:
# iterative approach in-case the number of partitians is particularly large
def splitter(value, partitians, min_range, max_range, part_values):
# lower bound used to determine if the solution is within reach
lower_bound = 0
# upper bound used to determine if the solution is within reach
upper_bound = 0
# upper_range used as upper limit for the iterator
upper_range = 0
# lower range used as lower limit for the iterator
lower_range = 0
# interval will be + or -
interval = 0
while value > 0:
partitians -= 1
lower_bound = min_range*(partitians)
upper_bound = max_range*(partitians)
# if the value is more likely at the upper bound start from there
if abs(lower_bound - value) < abs(upper_bound - value):
upper_range = max_range
lower_range = min_range-1
interval = -1
# if the value is more likely at the lower bound start from there
else:
upper_range = min_range
lower_range = max_range+1
interval = 1
for i in range(upper_range, lower_range, interval):
# make sure what we are doing won't break solution
if lower_bound <= value-i and upper_bound >= value-i:
part_values.append(i)
value -= i
break
return part_values
def partitioner(value, partitians, min_range, max_range):
if min_range*partitians <= value and max_range*partitians >= value:
return splitter(value, partitians, min_range, max_range, [])
else:
print ("this is impossible to solve")
def main():
print(partitioner(9800, 1000, 2, 100))
The basic idea behind this script is that the value needs to fall between min*parts and max*parts, for each step of the solution, if we always achieve this goal, we will eventually end up at min < value < max for parts == 1, so if we constantly take away from the value, and keep it within this min < value < max range we will always find the result if it is possable.
For this code's example, it will basically always take away either max or min depending on which bound the value is closer to, untill some non min or max value is left over as remainder.
A simple realization you can make is that the average of the X_i must be between A and B, so we can simply divide X by N and then do some small adjustments to distribute the remainder evenly to get a valid partition.
Here's one way to do it:
X_i = ceil (X / N) if i <= X mod N,
floor (X / N) otherwise.
This gives a valid solution if A <= floor (X / N) and ceil (X / N) <= B. Otherwise, there is no solution. See proofs below.
sum(X_i) == X
Proof:
Use the division algorithm to write X = q*N + r with 0 <= r < N.
If r == 0, then ceil (X / N) == floor (X / N) == q so the algorithm sets all X_i = q. Their sum is q*N == X.
If r > 0, then floor (X / N) == q and ceil (X / N) == q+1. The algorithm sets X_i = q+1 for 1 <= i <= r (i.e. r copies), and X_i = q for the remaining N - r pieces. The sum is therefore (q+1)*r + (N-r)*q == q*r + r + N*q - r*q == q*N + r == X.
If floor (X / N) < A or ceil (X / N) > B, then there is no solution.
Proof:
If floor (X / N) < A, then floor (X / N) * N < A * N, and since floor(X / N) * N <= X, this means that X < A*N, so even using only the smallest pieces possible, the sum would be larger than X.
Similarly, if ceil (X / N) > B, then ceil (X / N) * N > B * N, and since ceil(X / N) * N >= X, this means that X > B*N, so even using only the largest pieces possible, the sum would be smaller than X.