Rewriting Ruby Inject - ruby
Here is a brain bender.
I am trying to rewrite the Ruby Inject method. I have got as far as below.
class Array
def injector(input = nil)
if input == nil
num = self.first
else
num = input
end
self[0..-1].each do |x|
num = yield(num, x)
end
return num
end
end
It is passing some tests, but it is not fully accurate, for example;
[1,2,3,4,5].injector(0) {|x,y| x + y} #=> 14
As opposed to the expected output 15, is it a rounding error? I cannot seem to figure this one out
Additional example (above updated [0..-1]):
[9,8,7,6,5].injector {|x,y| x * y} #=> 136080
Ruby .inject outputs 15120
The starting index is important as it depends on your input.
class Array
def injector(input = nil)
if input.nil?
start = 1
num = self.first
else
start = 0
num = input
end
self[start..-1].each do |x|
num = yield(num, x)
end
return num
end
end
Using nil as the default is probably wrong, I should be able to pass nil in as the default memo.
class Array
def injector(memo = (i=1; first))
(i||0).upto(length-1) { |i| memo = yield memo, self[i] }
memo
end
end
[1,2,3,4,5].injector(1) { |sum, n| sum + n }
[1,2,3,4,5].injector(0) { |sum, n| sum + n }
[1,2,3,4,5].injector { |sum, n| sum + n }
[1,2,3].injector(2) { |product, n| product * n }
[1,2,3].injector(1) { |product, n| product * n }
[1,2,3].injector { |product, n| product * n }
['b', 'c', 'd'].injector('a') { |str, char| str + char } # => "abcd"
['b', 'c', 'd'].injector { |str, char| str + char } # => "bcd"
seen = []
[1].injector(nil) { |prev, crnt| seen << prev << crnt }
seen # => [nil, 1]
Related
stdout can print correct result but not output in ruby although i have return the values
def two_sum(nums, target) for i in 0..3 - 1 for j in 0..3 - 1 if nums[i] + nums[j] == target && i < j && i != j puts '[' + (i - 1).to_s + ',' + (j - 1).to_s + ']' end end end return (i - 1), (j - 1) end def main() nums = Array.new() target = gets().to_i nums = gets().to_i two_sum(nums, target) end main() The requirement of the exercise is to print out numbers whose sum is equal to a target number. You need to get an array of integers and the target number at first. Can anyone debug it for me? Thank you.
I will leave it others to debug your code. Instead I would like to suggest another way that calculation could be made relatively efficiently. def two_sum(nums, target) h = nums.each_with_index.with_object(Hash.new { |h,k| h[k] = [] }) do |(n,i),h| h[n] << i end n,i = nums.each_with_index.find { |n,_i| h.key?(target-n) } return nil if n.nil? indices = h[target-n] return [i,indices.first] unless n == target/2 return nil if indices.size == 1 [i, indices.find { |j| j !=i }] end two_sum([2,7,11,15], 9) #=> [0, 1] two_sum([2,7,11,15], 10) #=> nil two_sum([2,7,11,15], 4) #=> nil two_sum([2,7,11,2,15], 4) #=> [0, 3] two_sum([2,11,7,11,2,15,11], 22) #=> [1, 3] In the last example h #=> {2=>[0, 4], 11=>[1, 3, 6], 7=>[2], 15=>[5]} Note that key lookups in hashes are very fast, specifically, the execution of the line indices = h[target-n] Building h has a computational complexity of O(n), where n = num.size and the remainder is very close to O(n) ("very close" because key lookups are close to constant-time), the overall computational complexity is close to O(n), whereas a brute-force approach considering each pair of values in num is O(n^2). If a hash is defined h = Hash.new { |h,k| h[k] = [] } executing h[k] when h has no key k causes h[k] = [] to be executed. For example, if h #=> { 2=>[0] } then h[11] << 1 causes h[11] = [] to be executed (since h does not have a key 11), after which h[11] << 1 is executed, resulting in h #=> { 2=>[0], 11=>[1] } By contrast, if then h[2] << 3 is executed we obtain h #=> { 2=>[0,3], 11=>[1] } without h[2] = [] being executed because h already has a key 2. See Hash::new. Expressing block variables as |(n,i),h| is a form of array decomposition.
How do I fix a problem to call a function in Ruby?
I'm trying to use some ruby code that I've found in Github. I've downloaded the code and did the necessary imports the "requires" and tried to run it as it is described in the readme file on github repository. The code is the following: In the file pcset_test.rb the code is the following: require './pcset.rb' require 'test/unit' # # When possible, test cases are adapted from # Introduction to Post-Tonal Theory by Joseph N. Straus, # unless obvious or otherwise noted. # class PCSetTest < Test::Unit::TestCase def test_init #assert_raise(ArgumentError) {PCSet.new []} assert_raise(ArgumentError) {PCSet.new [1, 2, 3, 'string']} assert_raise(ArgumentError) {PCSet.new "string"} assert_raise(ArgumentError) {PCSet.new [1, 2, 3.6, 4]} assert_equal([0, 1, 2, 9], PCSet.new([0, 1, 2, 33, 13]).pitches) assert_equal([3, 2, 1, 11, 10, 0], PCSet.new_from_string('321bac').pitches) assert_equal([0,2,4,5,7,11,9], PCSet.new([12,2,4,5,7,11,9]).pitches) assert_nothing_raised() {PCSet.new []} end def test_inversion end def test_transposition end def test_multiplication end # # set normal prime forte # # 0,2,4,7,8,11 7,8,11,0,2,4 0,1,4,5,7,9 6-31 # 0,1,2,4,5,7,11 11,0,1,2,4,5,7 0,1,2,3,5,6,8 7-Z36 # 0,1,3,5,6,7,9,10,11 5,6,7,9,10,11,0,1,3 0,1,2,3,4,6,7,8,10 9-8 # def test_normal_form testPC = PCSet.new [0,4,8,9,11] assert_kind_of(PCSet, testPC.normal_form) assert_equal([8,9,11,0,4], testPC.normal_form.pitches) assert_equal([10,1,4,6], PCSet.new([1,6,4,10]).normal_form.pitches) assert_equal([2,4,8,10], PCSet.new([10,8,4,2]).normal_form.pitches) assert_equal([7,8,11,0,2,4], PCSet.new([0,2,4,7,8,11]).normal_form.pitches) assert_equal([11,0,1,2,4,5,7], PCSet.new([0,1,2,4,5,7,11]).normal_form.pitches) assert_equal([5,6,7,9,10,11,0,1,3], PCSet.new([0,1,3,5,6,7,9,10,11]).normal_form.pitches) end def test_prime_form assert_equal([0,1,2,6], PCSet.new([5,6,1,7]).prime.pitches) assert_equal([0,1,4], PCSet.new([2,5,6]).prime.pitches) assert_equal([0,1,4,5,7,9], PCSet.new([0,2,4,7,8,11]).prime.pitches) assert_equal([0,1,2,3,5,6,8], PCSet.new([0,1,2,4,5,7,11]).prime.pitches) assert_equal([0,1,2,3,4,6,7,8,10], PCSet.new([0,1,3,5,6,7,9,10,11]).prime.pitches) end def test_set_class testPcs = PCSet.new([2,5,6]) testPrime = testPcs.prime assert_equal([ [2,5,6], [3,6,7], [4,7,8], [5,8,9], [6,9,10], [7,10,11], [8,11,0],[9,0,1], [10,1,2],[11,2,3],[0,3,4], [1,4,5], [6,7,10],[7,8,11],[8,9,0], [9,10,1],[10,11,2],[11,0,3], [0,1,4], [1,2,5], [2,3,6], [3,4,7], [4,5,8], [5,6,9] ].sort, PCSet.new([2,5,6]).set_class.map{|x| x.pitches}) assert_equal(testPcs.set_class.map{|x| x.pitches}, testPrime.set_class.map{|x| x.pitches}) end def test_interval_vector assert_equal([2,1,2,1,0,0], PCSet.new([0,1,3,4]).interval_vector) assert_equal([2,5,4,3,6,1], PCSet.new([0,1,3,5,6,8,10]).interval_vector) assert_equal([0,6,0,6,0,3], PCSet.new([0,2,4,6,8,10]).interval_vector) end def test_complement assert_equal([6,7,8,9,10,11], PCSet.new([0,1,2,3,4,5]).complement.pitches) assert_equal([3,4,5], PCSet.new([0,1,2], 6).complement.pitches) end # # Test values from (Morris 1991), pages 105-111 # Citation: # Morris. Class Notes for Atonal Music Theory # Lebanon, NH. Frog Peak Music, 1991. # def test_invariance_vector assert_equal([1,0,0,0,5,6,5,5],PCSet.new([0,2,5]).invariance_vector) assert_equal([2,2,2,2,6,6,6,6],PCSet.new([0,1,6,7]).invariance_vector) assert_equal([6,6,6,6,6,6,6,6],PCSet.new([0,2,4,6,8,10]).invariance_vector) assert_equal([1,0,0,0,0,0,0,0],PCSet.new([0,1,2,3,4,5,8]).invariance_vector) assert_equal([1,0,0,1,0,0,0,0],PCSet.new([0,1,2,3,5,6,8]).invariance_vector) assert_equal([12,12,12,12,0,0,0,0],PCSet.new([0,1,2,3,4,5,6,7,8,9,10,11]).invariance_vector) end # # Test values from (Huron 1994). Huron rounds, thus the 0.01 margin of error. # Citation: # Huron. Interval-Class Content in Equally Tempered Pitch-Class Sets: # Common Scales Exhibit Optimum Tonal Consonance. # Music Perception (1994) vol. 11 (3) pp. 289-305 # def test_huron h1 = PCSet.new([0,1,2,3,4,5,6,7,8,9,10,11]).huron assert_in_delta(-0.2, h1[0], 0.01) assert_in_delta(0.21, h1[1], 0.01) h2 = PCSet.new([0,2,4,5,7,9,11]).huron assert_in_delta(4.76, h2[0], 0.01) assert_in_delta(0.62, h2[1], 0.01) end def test_coherence end end And in the file pcset.rb the folloing code: # # => PCSet Class for Ruby # => Beau Sievers # => Hanover, Fall 2008. # # # TODO: Make this a module to avoid namespace collisions. # Lilypond and MusicXML output # include Math def choose(n, k) return [[]] if n.nil? || n.empty? && k == 0 return [] if n.nil? || n.empty? && k > 0 return [[]] if n.size > 0 && k == 0 c2 = n.clone c2.pop new_element = n.clone.pop choose(c2, k) + append_all(choose(c2, k-1), new_element) end def append_all(lists, element) lists.map { |l| l << element } end def array_to_binary(array) array.inject(0) {|sum, n| sum + 2**n} end # the following method is horrifically inelegant # but avoids monkey-patching. # TODO: do this right, incl. error checking def pearsons(x, y) if !x.is_a?(Array) || !y.is_a?(Array) then raise StandardError, "x and y must be arrays", caller end if x.size != y.size then raise StandardError, "x and y must be same size", caller end sum_x = x.inject(0) {|sum, n| sum + n} sum_y = y.inject(0) {|sum, n| sum + n} sum_square_x = x.inject(0) {|sum, n| sum + n * n} sum_square_y = y.inject(0) {|sum, n| sum + n * n} xy = [] x.zip(y) {|a, b| xy.push(a * b)} sum_xy = xy.inject(0) {|sum, n| sum + n} num = sum_xy - ((sum_x * sum_y)/x.size) den = Math.sqrt((sum_square_x - ((sum_x*sum_x)/x.size)) * (sum_square_y - ((sum_y*sum_y)/x.size))) (num/den) end class PCSet include Comparable attr_reader :pitches, :base, :input def initialize(pcarray, base = 12) if pcarray.instance_of?(Array) && pcarray.all?{|pc| pc.instance_of?(Fixnum)} #base, #input = base, pcarray #pitches = pcarray.map{ |x| x % #base }.uniq else raise ArgumentError, "Improperly formatted PC array", caller end end def PCSet.new_from_string(pcstring, base = 12) if base > 36 then raise StandardError, "Use PCSet.new to create pcsets with a base larger than 36", caller end pcarray = [] pcstring.downcase.split(//).each do |c| if c <= 'z' and c >= '0' then pcarray.push(c.to_i(36)) end end PCSet.new pcarray, base end def <=>(pcs) #pitches <=> pcs.pitches end def [](index) #pitches[index] end # Intersection def &(other) PCSet.new #pitches & other.pitches end # Union def |(other) PCSet.new #pitches | other.pitches end def inspect #pitches.inspect end def length #pitches.length end def invert(axis = 0) PCSet.new #pitches.map {|x| (axis-x) % #base} end def invert!(axis = 0) #pitches.map! {|x| (axis-x) % #base} end def transpose(interval) PCSet.new #pitches.map {|x| (x + interval) % #base} end def transpose!(interval) #pitches.map! {|x| (x + interval) % #base} end def multiply(m = 5) PCSet.new #pitches.map {|x| (x * m) % #base} end def multiply!(m = 5) #pitches.map! {|x| (x * m) % #base} end def zero transpose(-1 * #pitches[0]) end def zero! transpose!(-1 * #pitches[0]) end def transpositions (0..(#base-1)).to_a.map{|x| #pitches.map {|y| (y + x) % #base}}.sort.map {|x| PCSet.new x} end def transpositions_and_inversions(axis = 0) transpositions + invert(axis).transpositions end # # Normal form after Straus. Morris and AthenaCL do this differently. # def normal_form tempar = #pitches.sort arar = [] # [[1,4,7,8,10],[4,7,8,10,1], etc.] get each cyclic variation tempar.each {arar.push PCSet.new(tempar.unshift(tempar.pop))} most_left_compact(arar) end def normal_form! #pitches = normal_form.pitches end def is_normal_form? self.pitches == self.normal_form.pitches end def set_class transpositions_and_inversions.map{|pcs| pcs.normal_form}.sort end def prime most_left_compact([normal_form.zero, invert.normal_form.zero]) end def prime! self.pitches = self.prime.pitches end def is_prime? self.pitches == self.prime.pitches end def complement new_pitches = [] #base.times do |p| if !#pitches.include? p then new_pitches.push p end end PCSet.new new_pitches end def full_interval_vector pairs = choose(#pitches, 2) # choose every pc pair intervals = pairs.map {|x| (x[1] - x[0]) % #base} # calculate every interval i_vector = Array.new(#base-1).fill(0) intervals.each {|x| i_vector[x-1] += 1} # count the intervals i_vector end def interval_vector i_vector = full_interval_vector (0..((#base-1)/2)-1).each {|x| i_vector[x] += i_vector.pop} i_vector end # # Morris's invariance vector # def invariance_vector(m = 5) t = transpositions.map!{|pcs| self & pcs} ti = invert.transpositions.map!{|pcs| self & pcs} tm = multiply(m).transpositions.map!{|pcs| self & pcs} tmi = invert.multiply(m).transpositions.map!{|pcs| self & pcs} tc = complement.transpositions.map!{|pcs| self & pcs} tic = complement.invert.transpositions.map!{|pcs| self & pcs} tmc = complement.multiply(m).transpositions.map!{|pcs| self & pcs} tmic = complement.invert.multiply(m).transpositions.map!{|pcs| self & pcs} [t, ti, tm, tmi, tc, tic, tmc, tmic].map{|x| x.reject{|pcs| pcs.pitches != #pitches}.length} end # Huron's aggregate dyadic consonance measure. # Huron. Interval-Class Content in Equally Tempered Pitch-Class Sets: # Common Scales Exhibit Optimum Tonal Consonance. # Music Perception (1994) vol. 11 (3) pp. 289-305 def huron if #base != 12 then raise StandardError, "PCSet.huron only makes sense for mod 12 pcsets", caller end # m2/M7 M2/m7 m3/M6 M3/m6 P4/P5 A4/d5 huron_table = [-1.428, -0.582, 0.594, 0.386, 1.240, -0.453] interval_consonance = [] interval_vector.zip(huron_table) {|x, y| interval_consonance.push(x * y) } aggregate_dyadic_consonance = interval_consonance.inject {|sum, n| sum + n} [aggregate_dyadic_consonance, pearsons(interval_vector, huron_table)] end # # Balzano's vector of relations. Citation for all Balzano methods: # # Balzano. "The Pitch Set as a Level of Description for Studying Musical # Pitch Perception" in Music, Mind, and Brain ed. Clynes. Plenum Press. 1982. # def vector_of_relations (0..length-1).to_a.map do |i| (0..length-1).to_a.map do |j| (#pitches[(i + j) % length] - #pitches[i]) % #base end end end # # Checks if the set satisfies Balzano's uniqueness. # def is_unique? vector_of_relations.uniq.size == vector_of_relations.size end # # Checks if the set satisfies Balzano's scalestep-semitone coherence. # For all s[i] and s[i1]: # j < k => v[i][j] < v[i1][k] # Where j and k are scalestep-counting indices. # And unless v[i][j] == 6 (a tritone), in which case the strict inequality is relaxed. # def is_coherent? v = vector_of_relations truth_array = [] all_pair_indices = choose((0..length-1).to_a, 2) all_pair_indices.each do |i, i1| all_pair_indices.each do |j, k| if v[i][j] == 6 truth_array.push(v[i][j] <= v[i1][k]) else truth_array.push(v[i][j] < v[i1][k]) end if v[i1][j] == 6 truth_array.push(v[i1][j] <= v[i][k]) else truth_array.push(v[i1][j] < v[i][k]) end end end !truth_array.include?(false) end # # Strict Balzano coherence, no inequality relaxation for tritones. # def is_strictly_coherent? v = vector_of_relations truth_array = [] all_pair_indices = choose((0..length-1).to_a, 2) all_pair_indices.each do |i, i1| all_pair_indices.each do |j, k| truth_array.push(v[i][j] < v[i1][k]) truth_array.push(v[i1][j] < v[i][k]) end end !truth_array.include?(false) end def notes(middle_c = 0) noteArray = ['C','C#','D','D#','E','F','F#','G','G#','A','A#','B'] if #base != 12 then raise StandardError, "PCSet.notes only makes sense for mod 12 pcsets", caller end out_string = String.new transpose(-middle_c).pitches.each do |p| out_string += noteArray[p] + ", " end out_string.chop.chop end def info print "modulo: #{#base}\n" print "raw input: #{#input.inspect}\n" print "pitch set: #{#pitches.inspect}\n" print "notes: #{notes}\n" print "normal: #{normal_form.inspect}\n" print "prime: #{prime.inspect}\n" print "interval vector: #{interval_vector.inspect}\n" print "invariance vector: #{invariance_vector.inspect}\n" print "huron ADC: #{huron[0]} pearsons: #{huron[1]}\n" print "balzano coherence: " if is_strictly_coherent? print "strictly coherent\n" elsif is_coherent? print "coherent\n" else print "false\n" end end # def lilypond # # end # # def musicXML # # end ############################################################################### private # # Convert every pitch array to a binary representation, e.g.: # [0,2,4,8,10] -> 010100010101 # 2^n: BA9876543210 # The smallest binary number is the most left-compact. # def most_left_compact(pcset_array) if !pcset_array.all? {|pcs| pcs.length == pcset_array[0].length} raise ArgumentError, "PCSet.most_left_compact: All PCSets must be of same cardinality", caller end zeroed_pitch_arrays = pcset_array.map {|pcs| pcs.zero.pitches} binaries = zeroed_pitch_arrays.map {|array| array_to_binary(array)} winners = [] binaries.each_with_index do |num, i| if num == binaries.min then winners.push(pcset_array[i]) end end winners.sort[0] end end I'm calling them as follows: > my_pcset = PCSet.new([0,2,4,6,8,10]) > my_pcset2 = PCSet.new([1,5,9]) It shoud return: > my_pcset = PCSet.new([0,2,4,6,8,10]) => [0, 2, 4, 6, 8, 10] > my_pcset2 = PCSet.new([1,5,9]) => [1, 5, 9] But is returning nothing. The code is available on github Thanks
Try this in terminal: irb -r ./path_to_directory/pcset.rb and then initialize the objects.
I think the documentation for the repo is bad as it does not explain how you should be running this. The result of my_pcset = PCSet.new([0,2,4,6,8,10]) should set my_pcset to an instance of a PCSet not an array, so these lines from the README file are confusing at best. 3. How to use it Make new PCSets: my_pcset = PCSet.new([0,2,4,6,8,10]) => [0, 2, 4, 6, 8, 10] my_pcset2 = PCSet.new([1,5,9]) => [1, 5, 9] Looking at the code, I see inspect has been delegated to #pitches def inspect #pitches.inspect end I think if you inspect my_pcset you will get the expected result. my_pcset = PCSet.new([0,2,4,6,8,10]) p my_pcset # will print [0, 2, 4, 6, 8, 10] or `my_pcset.inspect` will return what you are expecting.
Keys of a hash whose values sum to a particular value
I have a hash: a = {"Q1"=>1, "Q2"=>2, "Q5"=>3, "Q8"=>3} I want to retrieve a set of keys from it such that the sum of their values equals a certain number, for example 5. In such case, the output should be: Q2 Q5 Please help me on how to get this.
def find_combo(h, tot) arr = h.to_a (1..arr.size).find do |n| enum = arr.combination(n).find { |e| e.map(&:last).sum == tot } return enum.map(&:first) unless enum.nil? end end h = {"Q1"=>1, "Q2"=>2, "Q5"=>3, "Q8"=>3} find_combo(h, 5) #=> ["Q2", "Q5"] find_combo(h, 2) #=> ["Q2"] find_combo(h, 6) #=> ["Q5", "Q8"] find_combo(h, 4) #=> ["Q1", "Q5"] find_combo(h, 8) #=> ["Q2", "Q5", "Q8"] find_combo(h, 9) #=> ["Q1", "Q2", "Q5", "Q8"] find_combo(h, 10) #=> nil
Just out of curiosity: hash = {"Q1"=>1, "Q2"=>2, "Q5"=>3, "Q8"=>3} arr = hash.to_a 1.upto(hash.size). lazy. find do |i| res = arr.combination(i).find do |h| h.map(&:last).sum == 5 end break res if res end.tap { |result| break result.to_h if result } #⇒ {"Q2" => 2, "Q5" => 3}
Optimising code for matching two strings modulo scrambling
I am trying to write a function scramble(str1, str2) that returns true if a portion of str1 characters can be rearranged to match str2, otherwise returns false. Only lower case letters (a-z) will be used. No punctuation or digits will be included. For example: str1 = 'rkqodlw'; str2 = 'world' should return true. str1 = 'cedewaraaossoqqyt'; str2 = 'codewars' should return true. str1 = 'katas'; str2 = 'steak' should return false. This is my code: def scramble(s1, s2) #sorts strings into arrays first = s1.split("").sort second = s2.split("").sort correctLetters = 0 for i in 0...first.length #check for occurrences of first letter occurrencesFirst = first.count(s1[i]) for j in 0...second.length #scan through second string occurrencesSecond = second.count(s2[j]) #if letter to be tested is correct and occurrences of first less than occurrences of second #meaning word cannot be formed if (s2[j] == s1[i]) && occurrencesFirst < occurrencesSecond return false elsif s2[j] == s1[i] correctLetters += 1 elsif first.count(s1[s2[j]]) == 0 return false end end end if correctLetters == 0 return false end return true end I need help optimising this code. Please give me suggestions.
Here is one efficient and Ruby-like way of doing that. Code def scramble(str1, str2) h1 = char_counts(str1) h2 = char_counts(str2) h2.all? { |ch, nbr| nbr <= h1[ch] } end def char_counts(str) str.each_char.with_object(Hash.new(0)) { |ch, h| h[ch] += 1 } end Examples scramble('abecacdeba', 'abceae') #=> true scramble('abecacdeba', 'abweae') #=> false Explanation The three steps are as follows. str1 = 'abecacdeba' str2 = 'abceae' h1 = char_counts(str1) #=> {"a"=>3, "b"=>2, "e"=>2, "c"=>2, "d"=>1} h2 = char_counts(str2) #=> {"a"=>2, "b"=>1, "c"=>1, "e"=>2} h2.all? { |ch, nbr| nbr <= h1[ch] } #=> true The last statement is equivalent to 2 <= 3 && 1 <= 2 && 1 <= 2 && 2 <=2 The method char_counts constructs what is sometimes called a "counting hash". To understand how char_counts works, see Hash::new, especially the explanation of the effect of providing a default value as an argument of new. In brief, if a hash is defined h = Hash.new(0), then if h does not have a key k, h[k] returns the default value, here 0 (and the hash is not changed). Suppose, for different data, h1 = { "a"=>2 } h2 = { "a"=>1, "b"=>2 } Then we would find that 1 <= 2 #=> true but 2 <= 0 #=> false, so the method would return false. The second comparison is 2 <= h1["b"]. As h1 does not have a key "b", h1["b"] returns the default value, 0. The method char_counts is effectively a short way of writing the method expressed as follows. def char_counts(str) h = {} str.each_char do |ch| h[ch] = 0 unless h.key?(ch) # instead of Hash.new(0) h[ch] = h[c] + 1 # instead of h[c][ += 1 end h # no need for this if use `each_with_object` end See Enumerable#each_with_object, String#each_char (preferable to String.chars, as the latter produces an unneeded temporary array whereas the former returns an enumerator) and Hash#key? (or Hash#has_key?, Hash#include? or Hash#member?). An Alternative def scramble(str1, str2) str2.chars.difference(str1.chars).empty? end class Array def difference(other) h = other.each_with_object(Hash.new(0)) { |e,h| h[e] += 1 } reject { |e| h[e] > 0 && h[e] -= 1 } end end I have found the method Array#difference to be so useful I proposed it be added to the Ruby Core (here). The response has been, er, underwhelming.
One way: def scramble(s1,s2) s2.chars.uniq.all? { |c| s1.count(c) >= s2.count(c) } end Another way: def scramble(s1,s2) pool = s1.chars.group_by(&:itself) s2.chars.all? { |c| pool[c]&.pop } end Yet another: def scramble(s1,s2) ('a'..'z').all? { |c| s1.count(c) >= s2.count(c) } end Since this appears to be from codewars, I submitted my first two there. Both got accepted and the first one was a bit faster. Then I was shown solutions of others and saw someone using ('a'..'z') and it's fast, so I include that here. The codewars "performance tests" aren't shown explicitly but they're all up to about 45000 letters long. So I benchmarked these solutions as well as Cary's (yours was too slow to be included) on shuffles of the alphabet repeated to be about that long (and doing it 100 times): user system total real Stefan 1 0.812000 0.000000 0.812000 ( 0.811765) Stefan 2 2.141000 0.000000 2.141000 ( 2.127585) Other 0.125000 0.000000 0.125000 ( 0.122248) Cary 1 2.562000 0.000000 2.562000 ( 2.575366) Cary 2 3.094000 0.000000 3.094000 ( 3.106834) Moral of the story? String#count is fast here. Like, ridiculously fast. Almost unbelievably fast (I actually had to run extra tests to believe it). It counts through about 1.9 billion letters per second (100 times 26 letters times 2 strings of ~45000 letters, all in 0.12 seconds). Note that the difference to my own first solution is just that I do s2.chars.uniq, and that increases the time from 0.12 seconds to 0.81 seconds. Meaning this double pass through one string takes about six times as long as the 52 passes for counting. The counting is about 150 times faster. I did expect it to be very fast, because it presumably just searches a byte in an array of bytes using C code (edit: looks like it does), but this speed still surprised me. Code: require 'benchmark' def scramble_stefan1(s1,s2) s2.chars.uniq.all? { |c| s1.count(c) >= s2.count(c) } end def scramble_stefan2(s1,s2) pool = s1.chars.group_by(&:itself) s2.chars.all? { |c| pool[c]&.pop } end def scramble_other(s1,s2) ('a'..'z').all? { |c| s1.count(c) >= s2.count(c) } end def scramble_cary1(str1, str2) h1 = char_counts(str1) h2 = char_counts(str2) h2.all? { |ch, nbr| nbr <= h1[ch] } end def char_counts(str) str.each_char.with_object(Hash.new(0)) { |ch, h| h[ch] += 1 } end def scramble_cary2(str1, str2) str2.chars.difference(str1.chars).empty? end class Array def difference(other) h = other.each_with_object(Hash.new(0)) { |e,h| h[e] += 1 } reject { |e| h[e] > 0 && h[e] -= 1 } end end Benchmark.bmbm do |x| n = 100 s1 = (('a'..'z').to_a * (45000 / 26)).shuffle.join s2 = s1.chars.shuffle.join x.report('Stefan 1') { n.times { scramble_stefan1(s1, s2) } } x.report('Stefan 2') { n.times { scramble_stefan2(s1, s2) } } x.report('Other') { n.times { scramble_other(s1, s2) } } x.report('Cary 1') { n.times { scramble_cary1(s1, s2) } } x.report('Cary 2') { n.times { scramble_cary2(s1, s2) } } end
What's wrong with my code?
def encrypt(string) alphabet = ("a".."b").to_a result = "" idx = 0 while idx < string.length character = string[idx] if character == " " result += " " else n = alphabet.index(character) n_plus = (n + 1) % alphabet.length result += alphabet[n_plus] end idx += 1 end return result end puts encrypt("abc") puts encrypt("xyz") I'm trying to get "abc" to print out "bcd" and "xyz" to print "yza". I want to advance the letter forward by 1. Can someone point me to the right direction?
All I had to do was change your alphabet array to go from a to z, not a to b, and it works fine. def encrypt(string) alphabet = ("a".."z").to_a result = "" idx = 0 while idx < string.length character = string[idx] if character == " " result += " " else n = alphabet.index(character) n_plus = (n + 1) % alphabet.length result += alphabet[n_plus] end idx += 1 end return result end puts encrypt("abc") puts encrypt("xyz")
Another way to solve the issue, that I think is simpler, personally, is to use String#tr: ALPHA = ('a'..'z').to_a.join #=> "abcdefghijklmnopqrstuvwxyz" BMQIB = ('a'..'z').to_a.rotate(1).join #=> "bcdefghijklmnopqrstuvwxyza" def encrypt(str) str.tr(ALPHA,BMQIB) end def decrypt(str) str.tr(BMQIB,ALPHA) end encrypt('pizza') #=> "qjaab" decrypt('qjaab') #=> "pizza"
Alternatively if you don't want to take up that memory storing the alphabet you could use character codings and then just use arithmetic operations on them to shift the letters: def encrypt(string) result = "" idx = 0 while idx < string.length result += (string[idx].ord == 32 ? (string[idx].chr) : (string[idx].ord+1).chr) idx += 1 end result end Other strange thing about ruby is that you do not need to explicitly return something at the end of the method body. It just returns the last thing by default. This is considered good style amongst ruby folks.
Your question has been answered, so here are a couple of more Ruby-like ways of doing that. Use String#gsub with a hash CODE_MAP = ('a'..'z').each_with_object({}) { |c,h| h[c] = c < 'z' ? c.next : 'a' } #=> {"a"=>"b", "b"=>"c",..., "y"=>"z", "z"=>"a"} DECODE_MAP = CODE_MAP.invert #=> {"b"=>"a", "c"=>"b",..., "z"=>"y", "a"=>"z"} def encrypt(word) word.gsub(/./, CODE_MAP) end def decrypt(word) word.gsub(/./, DECODE_MAP) end encrypt('pizza') #=> "qjaab" decrypt('qjaab') #=> "pizza" Use String#gsub with Array#rotate LETTERS = ('a'..'z').to_a #=> ["a", "b", ..., "z"] def encrypt(word) word.gsub(/./) { |c| LETTERS.rotate[LETTERS.index(c)] } end def decrypt(word) word.gsub(/./) { |c| LETTERS.rotate(-1)[LETTERS.index(c)] } end encrypt('pizza') #=> "qjaab" decrypt('qjaab') #=> "pizza"