Healpy: cut n by n pix submaps - healpy

I have a healpy full-sky map, and need to chose some sky patches centered around given pixels. hp.query_disc finds the pixels within a given disc, which is nice. But I would like to be able to add/subtract on different sky patches, and so the fact that different discs cannot be the same size causes a problem.
I have also used
hp.gnomview(return_projected_map=True)
to look at my sky patches, and found that each returned 2D array has the same size. However since I would probably do stuff on many submaps, I do not want the maps to be drawn every time. Is it possible to obtain only the 2D array? And if so, is it fine to use plt.imshow after adding/subtracting those arrays?
I feel like there should be more elegant ways to achieve what I want -- Are there any existing routines that I overlooked? Thanks!

Related

algorithm for finding closest images based on jitter / translation

I've got a series of images and in some of them the people are only slightly moved, or the camera was shifted slightly, but mostly all is still the same.
I'm wondering algorithmically how I could detect this and find and score images based on their closeness.
A simple euclidian distance might not work - imagine the case in where zebra stripes were shifted just enough to have the "old" white positions filled with black and vice versa. A pathological example, I know, but you get the idea.
As an optional tag along, perhaps there's a nice OpenCV or scipy (preference for Python) function for this or some of the pipeline for doing this.
Thanks!
You can calculate the difference between your images.
The higher the intensity values of the difference image, the more they are different.
So, if you have two exactly the same images and subtract them, there will be a "black" difference image.
You can simply use the overloaded operator-() of Mat-class.

How to know if an images is similar to another (slightly different angle but same point of view)

I've checked methods like Phasher to get similar images. Basically to resize images to 8x8, grayscale, get average pixel and create a binary hash of each pixel comparing if it's above or below the average pixel.
This method is very well explained here:
http://hackerfactor.com/blog/index.php?/archives/432-Looks-Like-It.html
Example working:
- image 1 of a computer on a table
- image 2, the same, but with a coin
This would work, since, using the hash of a very reduced, grayscale image, both of them will be almost the same, or even the same. So you can conclude they are similar when 90% of more of the pixels are the same (in the same place!)
My problem is in images that are taken from the same point of view but different angle, for example this ones:
In this case, the hashes "fingerprint" generated are so shifted each other, that we can not compare the hashes bit by bit, it will be very different.
The pixels are "similar", but they are not in the same place, since in this case there's more sky, and the houses "starts" more below than the first one.
So the hash comparison results in "they are different images".
Possible solution:
I was thinking about creating a larger hash for the first image, then get 10 random "sub hashes" for the second one, and try to see if the 10 sub hashes are or are not in "some place" of the first big hash (if a substring is contained into another bigger).
Problem here I think is the CPU/time when working with thousands of images, since you have to compare 1 image to 1000, and in each one, compare 10 sub hashes with a big one.
Other solutions ? ;-)
One option is to detect a set of "interesting" points for each image and store that alongside your hash. It's somewhat similar to the solution you suggested.
We want those points be unlikely to vary between images like yours that have shifts in perspective. These lecture slides give a good overview of how to find points like that with fairly straightforward linear algebra. I'm using Mathematica because it has built in functions for a lot of this stuff. ImageKeypoints does what we want here.
After we have our interesting points we need to find which ones match between the images we're comparing. If your images are very similar, like the ones in your examples, you could probably just take an 8x8 greyscale image for each interesting point and compare each from one image with the ones for the nearby interesting points on the other image. I think you could use your existing algorithm.
If you wanted to use a more advanced algorithm like SIFT you'd need to have a look at ImageKeypoint's properties like scale and orientation.
The ImageKeypoints documentation has this example you can use to get a small piece of the image for each interesting point (it uses the scale property instead of a fixed size):
MapThread[ImageTrim[img, {#1}, 2.5 #2] &,
Transpose#
ImageKeypoints[img, {"Position", "Scale"},
"KeypointStrength" -> .001]]
Finding a certain number of matching points might be enough to say that the images are similar, but if not you can use something like RANSAC to figure out the transformation you need to align your hash images (the 8x8 images you're already able to generate) enough that your existing algorithm works.
I should point out that Mathematica has ImageCorrespondingPoints, which does all of this stuff (using ImageKeypoints) much better. But I don't know how you could have it cache the intermediate results so that scales for what you're trying to do. You might want to look into its ability to constrain matching points to a perspective transform, though.
Here's a plot of the matching points for your example images to give you an idea of what parts end up matching:
So you can precalculate the interesting points for your database of images, and the greyscale hashes for each point. You'll have to compare several hash images for each image in your database, rather than just two, but it will scale to within a constant factor of your current algorithm.
You can try an upper bound if the hashes doesn't match compare how many pixels match from the 8x8 grid. Maybe you can try to match the colors like in photo mosaic:Photo Mosaic Algorithm. How to create a mosaic photo given the basic image and a list of tiles?.

Generating a Nice Looking Starfield Pattern

I'm trying to generate a scrolling starfield for a game with C++ and SDL. I'm using a simple, naive algorithm that just creates a lot of white pixels on black backround. However, this "starfield" looks too unnatural - probably because of the random number generator's poor quality (I use the rand() function).
Are there any special algorithms for generating starfields that look more or less realistic?
Thanks.
There's always this classic. Highlights:
[...] imagine the stars to be points in 3D space, all of them moving towards the viewer, along the Z-axis. At each time step, the 3D coordinates of the stars will be projected onto the screen, and displayed.
For a smoother effect, we can make the stars black when they first appear (so you don't notice them) then get brighter as they get closer.
There are two ways the sense of vastness can be modeled. The first is simply to model a huge area of space, which is impractical to say the least. The second is to make the stars move with a range of velocities.
I found this useful tutorial a while ago on creating a 'realistic' star field. It's not C++, but it should be easily adaptable once you get the idea.
You could use Lloyd's algorithm to relax the random points and make them semi-random. I read this idea in a map generator but it probably can be used do create an eventually distributed star field too.
You probably don't want it to be truly random. You will end up with blobs of pixels in some places when you really want individual pixels scattered around. Your best bet would probably be to code a smaller section and then just repeat it over and over to get the full starfield look.

Raytracing (LoS) on 3D hex-like tile maps

Greetings,
I'm working on a game project that uses a 3D variant of hexagonal tile maps. Tiles are actually cubes, not hexes, but are laid out just like hexes (because a square can be turned to a cube to extrapolate from 2D to 3D, but there is no 3D version of a hex). Rather than a verbose description, here goes an example of a 4x4x4 map:
(I have highlighted an arbitrary tile (green) and its adjacent tiles (yellow) to help describe how the whole thing is supposed to work; but the adjacency functions are not the issue, that's already solved.)
I have a struct type to represent tiles, and maps are represented as a 3D array of tiles (wrapped in a Map class to add some utility methods, but that's not very relevant).
Each tile is supposed to represent a perfectly cubic space, and they are all exactly the same size. Also, the offset between adjacent "rows" is exactly half the size of a tile.
That's enough context; my question is:
Given the coordinates of two points A and B, how can I generate a list of the tiles (or, rather, their coordinates) that a straight line between A and B would cross?
That would later be used for a variety of purposes, such as determining Line-of-sight, charge path legality, and so on.
BTW, this may be useful: my maps use the (0,0,0) as a reference position. The 'jagging' of the map can be defined as offsetting each tile ((y+z) mod 2) * tileSize/2.0 to the right from the position it'd have on a "sane" cartesian system. For the non-jagged rows, that yields 0; for rows where (y+z) mod 2 is 1, it yields 0.5 tiles.
I'm working on C#4 targeting the .Net Framework 4.0; but I don't really need specific code, just the algorithm to solve the weird geometric/mathematical problem. I have been trying for several days to solve this at no avail; and trying to draw the whole thing on paper to "visualize" it didn't help either :( .
Thanks in advance for any answer
Until one of the clever SOers turns up, here's my dumb solution. I'll explain it in 2D 'cos that makes it easier to explain, but it will generalise to 3D easily enough. I think any attempt to try to work this entirely in cell index space is doomed to failure (though I'll admit it's just what I think and I look forward to being proved wrong).
So you need to define a function to map from cartesian coordinates to cell indices. This is straightforward, if a little tricky. First, decide whether point(0,0) is the bottom left corner of cell(0,0) or the centre, or some other point. Since it makes the explanations easier, I'll go with bottom-left corner. Observe that any point(x,floor(y)==0) maps to cell(floor(x),0). Indeed, any point(x,even(floor(y))) maps to cell(floor(x),floor(y)).
Here, I invent the boolean function even which returns True if its argument is an even integer. I'll use odd next: any point point(x,odd(floor(y)) maps to cell(floor(x-0.5),floor(y)).
Now you have the basics of the recipe for determining lines-of-sight.
You will also need a function to map from cell(m,n) back to a point in cartesian space. That should be straightforward once you have decided where the origin lies.
Now, unless I've misplaced some brackets, I think you are on your way. You'll need to:
decide where in cell(0,0) you position point(0,0); and adjust the function accordingly;
decide where points along the cell boundaries fall; and
generalise this into 3 dimensions.
Depending on the size of the playing field you could store the cartesian coordinates of the cell boundaries in a lookup table (or other data structure), which would probably speed things up.
Perhaps you can avoid all the complex math if you look at your problem in another way:
I see that you only shift your blocks (alternating) along the first axis by half the blocksize. If you split up your blocks along this axis the above example will become (with shifts) an (9x4x4) simple cartesian coordinate system with regular stacked blocks. Now doing the raytracing becomes much more simple and less error prone.

Image comparison - fast algorithm

I'm looking to create a base table of images and then compare any new images against that to determine if the new image is an exact (or close) duplicate of the base.
For example: if you want to reduce storage of the same image 100's of times, you could store one copy of it and provide reference links to it. When a new image is entered you want to compare to an existing image to make sure it's not a duplicate ... ideas?
One idea of mine was to reduce to a small thumbnail and then randomly pick 100 pixel locations and compare.
Below are three approaches to solving this problem (and there are many others).
The first is a standard approach in computer vision, keypoint matching. This may require some background knowledge to implement, and can be slow.
The second method uses only elementary image processing, and is potentially faster than the first approach, and is straightforward to implement. However, what it gains in understandability, it lacks in robustness -- matching fails on scaled, rotated, or discolored images.
The third method is both fast and robust, but is potentially the hardest to implement.
Keypoint Matching
Better than picking 100 random points is picking 100 important points. Certain parts of an image have more information than others (particularly at edges and corners), and these are the ones you'll want to use for smart image matching. Google "keypoint extraction" and "keypoint matching" and you'll find quite a few academic papers on the subject. These days, SIFT keypoints are arguably the most popular, since they can match images under different scales, rotations, and lighting. Some SIFT implementations can be found here.
One downside to keypoint matching is the running time of a naive implementation: O(n^2m), where n is the number of keypoints in each image, and m is the number of images in the database. Some clever algorithms might find the closest match faster, like quadtrees or binary space partitioning.
Alternative solution: Histogram method
Another less robust but potentially faster solution is to build feature histograms for each image, and choose the image with the histogram closest to the input image's histogram. I implemented this as an undergrad, and we used 3 color histograms (red, green, and blue), and two texture histograms, direction and scale. I'll give the details below, but I should note that this only worked well for matching images VERY similar to the database images. Re-scaled, rotated, or discolored images can fail with this method, but small changes like cropping won't break the algorithm
Computing the color histograms is straightforward -- just pick the range for your histogram buckets, and for each range, tally the number of pixels with a color in that range. For example, consider the "green" histogram, and suppose we choose 4 buckets for our histogram: 0-63, 64-127, 128-191, and 192-255. Then for each pixel, we look at the green value, and add a tally to the appropriate bucket. When we're done tallying, we divide each bucket total by the number of pixels in the entire image to get a normalized histogram for the green channel.
For the texture direction histogram, we started by performing edge detection on the image. Each edge point has a normal vector pointing in the direction perpendicular to the edge. We quantized the normal vector's angle into one of 6 buckets between 0 and PI (since edges have 180-degree symmetry, we converted angles between -PI and 0 to be between 0 and PI). After tallying up the number of edge points in each direction, we have an un-normalized histogram representing texture direction, which we normalized by dividing each bucket by the total number of edge points in the image.
To compute the texture scale histogram, for each edge point, we measured the distance to the next-closest edge point with the same direction. For example, if edge point A has a direction of 45 degrees, the algorithm walks in that direction until it finds another edge point with a direction of 45 degrees (or within a reasonable deviation). After computing this distance for each edge point, we dump those values into a histogram and normalize it by dividing by the total number of edge points.
Now you have 5 histograms for each image. To compare two images, you take the absolute value of the difference between each histogram bucket, and then sum these values. For example, to compare images A and B, we would compute
|A.green_histogram.bucket_1 - B.green_histogram.bucket_1|
for each bucket in the green histogram, and repeat for the other histograms, and then sum up all the results. The smaller the result, the better the match. Repeat for all images in the database, and the match with the smallest result wins. You'd probably want to have a threshold, above which the algorithm concludes that no match was found.
Third Choice - Keypoints + Decision Trees
A third approach that is probably much faster than the other two is using semantic texton forests (PDF). This involves extracting simple keypoints and using a collection decision trees to classify the image. This is faster than simple SIFT keypoint matching, because it avoids the costly matching process, and keypoints are much simpler than SIFT, so keypoint extraction is much faster. However, it preserves the SIFT method's invariance to rotation, scale, and lighting, an important feature that the histogram method lacked.
Update:
My mistake -- the Semantic Texton Forests paper isn't specifically about image matching, but rather region labeling. The original paper that does matching is this one: Keypoint Recognition using Randomized Trees. Also, the papers below continue to develop the ideas and represent the state of the art (c. 2010):
Fast Keypoint Recognition using Random Ferns - faster and more scalable than Lepetit 06
BRIEF: Binary Robust Independent Elementary Features - less robust but very fast -- I think the goal here is real-time matching on smart phones and other handhelds
The best method I know of is to use a Perceptual Hash. There appears to be a good open source implementation of such a hash available at:
http://phash.org/
The main idea is that each image is reduced down to a small hash code or 'fingerprint' by identifying salient features in the original image file and hashing a compact representation of those features (rather than hashing the image data directly). This means that the false positives rate is much reduced over a simplistic approach such as reducing images down to a tiny thumbprint sized image and comparing thumbprints.
phash offers several types of hash and can be used for images, audio or video.
This post was the starting point of my solution, lots of good ideas here so I though I would share my results. The main insight is that I've found a way to get around the slowness of keypoint-based image matching by exploiting the speed of phash.
For the general solution, it's best to employ several strategies. Each algorithm is best suited for certain types of image transformations and you can take advantage of that.
At the top, the fastest algorithms; at the bottom the slowest (though more accurate). You might skip the slow ones if a good match is found at the faster level.
file-hash based (md5,sha1,etc) for exact duplicates
perceptual hashing (phash) for rescaled images
feature-based (SIFT) for modified images
I am having very good results with phash. The accuracy is good for rescaled images. It is not good for (perceptually) modified images (cropped, rotated, mirrored, etc). To deal with the hashing speed we must employ a disk cache/database to maintain the hashes for the haystack.
The really nice thing about phash is that once you build your hash database (which for me is about 1000 images/sec), the searches can be very, very fast, in particular when you can hold the entire hash database in memory. This is fairly practical since a hash is only 8 bytes.
For example, if you have 1 million images it would require an array of 1 million 64-bit hash values (8 MB). On some CPUs this fits in the L2/L3 cache! In practical usage I have seen a corei7 compare at over 1 Giga-hamm/sec, it is only a question of memory bandwidth to the CPU. A 1 Billion-image database is practical on a 64-bit CPU (8GB RAM needed) and searches will not exceed 1 second!
For modified/cropped images it would seem a transform-invariant feature/keypoint detector like SIFT is the way to go. SIFT will produce good keypoints that will detect crop/rotate/mirror etc. However the descriptor compare is very slow compared to hamming distance used by phash. This is a major limitation. There are a lot of compares to do, since there are maximum IxJxK descriptor compares to lookup one image (I=num haystack images, J=target keypoints per haystack image, K=target keypoints per needle image).
To get around the speed issue, I tried using phash around each found keypoint, using the feature size/radius to determine the sub-rectangle. The trick to making this work well, is to grow/shrink the radius to generate different sub-rect levels (on the needle image). Typically the first level (unscaled) will match however often it takes a few more. I'm not 100% sure why this works, but I can imagine it enables features that are too small for phash to work (phash scales images down to 32x32).
Another issue is that SIFT will not distribute the keypoints optimally. If there is a section of the image with a lot of edges the keypoints will cluster there and you won't get any in another area. I am using the GridAdaptedFeatureDetector in OpenCV to improve the distribution. Not sure what grid size is best, I am using a small grid (1x3 or 3x1 depending on image orientation).
You probably want to scale all the haystack images (and needle) to a smaller size prior to feature detection (I use 210px along maximum dimension). This will reduce noise in the image (always a problem for computer vision algorithms), also will focus detector on more prominent features.
For images of people, you might try face detection and use it to determine the image size to scale to and the grid size (for example largest face scaled to be 100px). The feature detector accounts for multiple scale levels (using pyramids) but there is a limitation to how many levels it will use (this is tunable of course).
The keypoint detector is probably working best when it returns less than the number of features you wanted. For example, if you ask for 400 and get 300 back, that's good. If you get 400 back every time, probably some good features had to be left out.
The needle image can have less keypoints than the haystack images and still get good results. Adding more doesn't necessarily get you huge gains, for example with J=400 and K=40 my hit rate is about 92%. With J=400 and K=400 the hit rate only goes up to 96%.
We can take advantage of the extreme speed of the hamming function to solve scaling, rotation, mirroring etc. A multiple-pass technique can be used. On each iteration, transform the sub-rectangles, re-hash, and run the search function again.
My company has about 24million images come in from manufacturers every month. I was looking for a fast solution to ensure that the images we upload to our catalog are new images.
I want to say that I have searched the internet far and wide to attempt to find an ideal solution. I even developed my own edge detection algorithm.
I have evaluated speed and accuracy of multiple models.
My images, which have white backgrounds, work extremely well with phashing. Like redcalx said, I recommend phash or ahash. DO NOT use MD5 Hashing or anyother cryptographic hashes. Unless, you want only EXACT image matches. Any resizing or manipulation that occurs between images will yield a different hash.
For phash/ahash, Check this out: imagehash
I wanted to extend *redcalx'*s post by posting my code and my accuracy.
What I do:
from PIL import Image
from PIL import ImageFilter
import imagehash
img1=Image.open(r"C:\yourlocation")
img2=Image.open(r"C:\yourlocation")
if img1.width<img2.width:
img2=img2.resize((img1.width,img1.height))
else:
img1=img1.resize((img2.width,img2.height))
img1=img1.filter(ImageFilter.BoxBlur(radius=3))
img2=img2.filter(ImageFilter.BoxBlur(radius=3))
phashvalue=imagehash.phash(img1)-imagehash.phash(img2)
ahashvalue=imagehash.average_hash(img1)-imagehash.average_hash(img2)
totalaccuracy=phashvalue+ahashvalue
Here are some of my results:
item1 item2 totalsimilarity
desk1 desk1 3
desk1 phone1 22
chair1 desk1 17
phone1 chair1 34
Hope this helps!
As cartman pointed out, you can use any kind of hash value for finding exact duplicates.
One starting point for finding close images could be here. This is a tool used by CG companies to check if revamped images are still showing essentially the same scene.
I have an idea, which can work and it most likely to be very fast.
You can sub-sample an image to say 80x60 resolution or comparable,
and convert it to grey scale (after subsampling it will be faster).
Process both images you want to compare.
Then run normalised sum of squared differences between two images (the query image and each from the db),
or even better Normalised Cross Correlation, which gives response closer to 1, if
both images are similar.
Then if images are similar you can proceed to more sophisticated techniques
to verify that it is the same images.
Obviously this algorithm is linear in terms of number of images in your database
so even though it is going to be very fast up to 10000 images per second on the modern hardware.
If you need invariance to rotation, then a dominant gradient can be computed
for this small image, and then the whole coordinate system can be rotated to canonical
orientation, this though, will be slower. And no, there is no invariance to scale here.
If you want something more general or using big databases (million of images), then
you need to look into image retrieval theory (loads of papers appeared in the last 5 years).
There are some pointers in other answers. But It might be overkill, and the suggest histogram approach will do the job. Though I would think combination of many different
fast approaches will be even better.
I believe that dropping the size of the image down to an almost icon size, say 48x48, then converting to greyscale, then taking the difference between pixels, or Delta, should work well. Because we're comparing the change in pixel color, rather than the actual pixel color, it won't matter if the image is slightly lighter or darker. Large changes will matter since pixels getting too light/dark will be lost. You can apply this across one row, or as many as you like to increase the accuracy. At most you'd have 47x47=2,209 subtractions to make in order to form a comparable Key.
Picking 100 random points could mean that similar (or occasionally even dissimilar) images would be marked as the same, which I assume is not what you want. MD5 hashes wouldn't work if the images were different formats (png, jpeg, etc), had different sizes, or had different metadata. Reducing all images to a smaller size is a good bet, doing a pixel-for- pixel comparison shouldn't take too long as long as you're using a good image library / fast language, and the size is small enough.
You could try making them tiny, then if they are the same perform another comparison on a larger size - could be a good combination of speed and accuracy...
What we loosely refer to as duplicates can be difficult for algorithms to discern.
Your duplicates can be either:
Exact Duplicates
Near-exact Duplicates. (minor edits of image etc)
perceptual Duplicates (same content, but different view, camera etc)
No1 & 2 are easier to solve. No 3. is very subjective and still a research topic.
I can offer a solution for No1 & 2.
Both solutions use the excellent image hash- hashing library: https://github.com/JohannesBuchner/imagehash
Exact duplicates
Exact duplicates can be found using a perceptual hashing measure.
The phash library is quite good at this. I routinely use it to clean
training data.
Usage (from github site) is as simple as:
from PIL import Image
import imagehash
# image_fns : List of training image files
img_hashes = {}
for img_fn in sorted(image_fns):
hash = imagehash.average_hash(Image.open(image_fn))
if hash in img_hashes:
print( '{} duplicate of {}'.format(image_fn, img_hashes[hash]) )
else:
img_hashes[hash] = image_fn
Near-Exact Duplicates
In this case you will have to set a threshold and compare the hash values for their distance from each
other. This has to be done by trial-and-error for your image content.
from PIL import Image
import imagehash
# image_fns : List of training image files
img_hashes = {}
epsilon = 50
for img_fn1, img_fn2 in zip(image_fns, image_fns[::-1]):
if image_fn1 == image_fn2:
continue
hash1 = imagehash.average_hash(Image.open(image_fn1))
hash2 = imagehash.average_hash(Image.open(image_fn2))
if hash1 - hash2 < epsilon:
print( '{} is near duplicate of {}'.format(image_fn1, image_fn2) )
If you have a large number of images, look into a Bloom filter, which uses multiple hashes for a probablistic but efficient result. If the number of images is not huge, then a cryptographic hash like md5 should be sufficient.
I think it's worth adding to this a phash solution I built that we've been using for a while now: Image::PHash. It is a Perl module, but the main parts are in C. It is several times faster than phash.org and has a few extra features for DCT-based phashes.
We had dozens of millions of images already indexed on a MySQL database, so I wanted something fast and also a way to use MySQL indices (which don't work with hamming distance), which led me to use "reduced" hashes for direct matches, the module doc discusses this.
It's quite simple to use:
use Image::PHash;
my $iph1 = Image::PHash->new('file1.jpg');
my $p1 = $iph1->pHash();
my $iph2 = Image::PHash->new('file2.jpg');
my $p2 = $iph2->pHash();
my $diff = Image::PHash::diff($p1, $p2);
I made a very simple solution in PHP for comparing images several years ago. It calculates a simple hash for each image, and then finds the difference. It works very nice for cropped or cropped with translation versions of the same image.
First I resize the image to a small size, like 24x24 or 36x36. Then I take each column of pixels and find average R,G,B values for this column.
After each column has its own three numbers, I do two passes: first on odd columns and second on even ones. The first pass sums all the processed cols and then divides by their number ( [1] + [2] + [5] + [N-1] / (N/2) ). The second pass works in another manner: ( [3] - [4] + [6] - [8] ... / (N/2) ).
So now I have two numbers. As I found out experimenting, the first one is a major one: if it's far from the values of another image, they are not similar from the human point of view at all.
So, the first one represents the average brightness of the image (again, you can pay most attention to green channel, then the red one, etc, but the default R->G->B order works just fine). The second number can be compared if the first two are very close, and it in fact represents the overall contrast of the image: if we have some black/white pattern or any contrast scene (lighted buildings in the city at night, for example) and if we are lucky, we will get huge numbers here if out positive members of sum are mostly bright, and negative ones are mostly dark, or vice versa. As I want my values to be always positive, I divide by 2 and shift by 127 here.
I wrote the code in PHP in 2017, and seems I lost the code. But I still have the screenshots:
The same image:
Black & White version:
Cropped version:
Another image, ranslated version:
Same color gamut as 4th, but another scene:
I tuned the difference thresholds so that the results are really nice. But as you can see, this simple algorithm cannot do anything good with simple scene translations.
On a side note I can notice that a modification can be written to make cropped copies from each of two images at 75-80 percent, 4 at the corners or 8 at the corners and middles of the edges, and then by comparing the cropped variants with another whole image just the same way; and if one of them gets a significantly better similarity score, then use its value instead of the default one).

Resources