Computing a series in racket - scheme

Ok, I'll start out by saying that this is a hw question. That being said, I'm not looking for the answer, just some direction to the answer.
I've got to compute a series up to n. My initial thoughts were to use recursion, and do something like the following
(define (series-b n)
(if (= n -1) 0 ; Not sure how to handle this
(+ (/ (expt -1 n) (factorial n)) (series-b (sub1 n)))
)
)
That seems to be the way to do this. However, I'm not really sure how to handle the -1 case, and that is throwing my expected answers off. Thanks in advance.
Edit
I do have some test cases, and they are as follows
n = 0: 1
n = 1: 1/2
n = 2: 2/3
n = 3: 5/8
n = 4: 19/30
n = 5: 91/144
I'm not entirely sure which series that is either.
Edit 2
I've selected soegaard's answer, however, I did make a small change to the final solution, which is:
(define (series-b n)
(for/sum ([i (+ n 1)])
(/ (expt -1 i)
(factorial (+ i 1))))
)
The accepted answer uses (factorial i) rather than (factorial (+ i 1)). I was not yet familiar with for/sum, but that is a really nice way to handle this problem, so thanks!

Your definitions seems right to me. The value of the empty sum is 0, so you are returning the correct value.
Your solution is the canonical one using recursion. An alternative using for/sum looks like this:
(define (series-c n)
(for/sum ([i (+ n 1)])
(/ (expt -1 i)
(factorial (+ i 1))))

You're doing well, and I think you're very close.
Start by writing a few test cases. Make sure to include test cases for the base case.
It's hard to answer the math part of the question, because I can't tell what series it is that you're computing!

You can implement this series as a SRFI 41 stream!
(require srfi/41)
(define negatives (stream-cons -1 (stream-map sub1 negatives)))
(define terms (stream-cons 1 (stream-map / terms (stream-cdr negatives))))
(define series (stream-cons 1 (stream-map + series (stream-cdr terms))))
Example usage:
> (stream->list 10 series)
(1 1/2 2/3 5/8 19/30 91/144 177/280 3641/5760 28673/45360 28319/44800)
Don't like streams? I like soegaard's answer, except that it has to recompute the factorial each time! I wish for/sum has the ability to hold "state" values the way for/fold does. Here's an implementation using for/fold:
(define (factorial-series n)
(define-values (sum _)
(for/fold ((sum 0) (value 1))
((i (in-range -2 (- -3 n) -1)))
(values (+ sum value)
(/ value i))))
sum)
Example usage:
> (map factorial-series (range 10))
(1 1/2 2/3 5/8 19/30 91/144 177/280 3641/5760 28673/45360 28319/44800)

Related

Define a scheme function that computes the trace of a square matrix

Example
(trace '((1 2 3) (4 5 6) (7 8 9))) should evaluate to 15 (1+5+9).
Hint: use map to obtain the smaller matrix on which trace can be applied recursively. The Matrix should be squared.
i tried to do it but i cant seem to do it, i tried to get the diagonals first.
define (diagonals m n)
(append
(for/list ([slice (in-range 1 (- (* 2 n) 2))])
(let ((z (if (< slice n) 0 (add1 (- slice n)))))
(for/list ([j (in-range z (add1 (- slice z)))])
(vector-ref (vector-ref m (sub1 (- n j))) (- slice j))))
is there any way to solve that question in a very simple recursive way using map.
i tried to solve it like that.
define (nth n l)
(if (or (> n (length l)) (< n 0))
(if (eq? n 0) (car l)
(nth (- n 1) (cdr l)))))
(+ (nth 3 '(3 4 5)) (nth 2 '(3 4 5)) (nth 3 '(3 4 5)))
but it didnt work too.
Although I don't think answering homework questions is a good idea in general, I can't resist this because it is an example of both what is so beautiful about Lisp programs and what can be so horrible.
What is so beautiful:
the recursive algorithm is almost identical to a mathematical proof by induction and it's just so pretty and clever;
What is so horrible:
matrices are not semantically nested lists and it's just this terrible pun to pretend they are (I'm not sure if my use of first & rest makes it better or worse);
it just conses like mad for no good reason at all;
I'm pretty sure its time complexity is n^2 when it could be n.
Of course Lisp programs do not have to be horrible in this way.
To compute the trace of a matrix:
if the matrix is null, then the trace is 0;
otherwise add the top left element to the trace of the matrix you get by removing the first row and column.
Or:
(define (awful-trace m)
(if (null? m)
;; the trace of the null matrix is 0
0
;; otherwise the trace is the top left element added to ...
(+ (first (first m))
;; the trace of the matrix without its first row and column which
;; we get by mapping rest over the rest of the matrix
(awful-trace (map rest (rest m))))))
And you may be tempted to think the following function is better, but it is just as awful in all the ways described above, while being harder to read for anyone not versed in the auxiliary-tail-recursive-function-with-an-accumulator trick:
(define (awful-trace/not-actually-better m)
(define (awful-loop mm tr)
(if (null? mm)
tr
(awful-loop (map rest (rest mm))
(+ tr (first (first mm))))))
(awful-loop m 0))
Try:
(apply + (map (lambda (index row) (list-ref row index))
'(0 1 2)
'((1 2 3) (4 5 6) (7 8 9))))
Of course, turn that into a function.
To handle matrices larger than 3x3, we need more indices.
Since map stops when it traverses the shortest of the lists, the (0 1 2) list can just be padded out by hand as large as ... your best guess at the the largest matrix you think you would ever represent with nested lists in Scheme before you graduate and never see this stuff again.

Evaluate the natural log e in Scheme

e=1/0!+1/1!+1/2!+1/3!……
I wrote the code like that, but whatever I input, it just returns 2....
Could you help me with that?
(define (fact n)
(if (= n 0)
1
(* n (- n 1))))
(define (e limit)
(if (= limit 0)
1
(+ (/ 1 (fact limit)) (e (- limit 1)))))
There's a mistake in the fact procedure:
(define (fact n)
(if (= n 0)
1
(* n (fact (- n 1))))) ; you forgot to recursively call `fact`
Test each procedure throughly, a simple unit test would have revealed that the problem was in fact and not in the e procedure.
Please tell me that this isn't for your homework, that you are just tinkering with Scheme. :)
I do not get 2 for any input to e. I get a divide-by-zero error for any input to e besides 0.
Setting that aside, you have a glaring problem in fact. Maybe the parentheses tripped you up and you have been staring at this too long:
(define (fact n)
(if (= n 0)
1
(* n (- n 1))))
...should be:
(define (fact n)
(if (= n 0)
1
(* n (fact (- n 1)))))
Remember, you can't implement a recursive function...without the function calling itself.
This should solve your problem.
Maybe TAs aren't available to help so quickly these days, but if this is for your homework, you need to work on breaking down the problems you encounter to the simplest elements to survive more programming, which will only get tougher. Specifically in this case, you needed to stop and ask whether fact, on which e depends, actually worked, find that it did not, and go from there.

Not returning the answer i need

(define (checksum-2 ls)
(if (null? ls)
0
(let ([n 0])
(+ (+ n 1))(* n (car ls))(checksum-2 (cdr ls)))))
Ok, I have this code, its suppose to, if I wrote it right, the number (n) should increase by one every time it goes through the list, so n (in reality) should be like 1 2 3 4, but I want n to be multiplied by the car of the list.
Everything loads, but when the answer is returned I get 0.
Thanks!
If you format your code differently, you might have an easier time seeing what is going on:
(define (checksum-2 ls)
(if (null? ls)
0
(let ([n 0])
(+ (+ n 1))
(* n (car ls))
(checksum-2 (cdr ls)))))
Inside the let form, the expressions are evaluated in sequence but you're not using the results for any of them (except the last one). The results of the addition and multiplication are simply discarded.
What you need to do in this case is define a new helper function that uses an accumulator and performs the recursive call. I'm going to guess this is homework or a learning exercise, so I'm not going to give away the complete answer.
UPDATE: As a demonstration of the sort of thing you might need to do, here is a similar function in Scheme to sum the integers from 1 to n:
(define (sum n)
(define (sum-helper n a)
(if (<= n 0)
a
(sum-helper (- n 1) (+ a n))))
(sum-helper n 0))
You should be able to use a similar framework to implement your checksum-2 function.

Find the Hardy–Ramanujan number using R5RS scheme. Please suggest improvements in idiom and calculations.

I remember once going to see
[Srinivasa Ramanujan] when he was ill
at Putney. I had ridden in taxi cab
number 1729 and remarked that the
number seemed to me rather a dull one,
and that I hoped it was not an
unfavorable omen. "No," he replied,
"it is a very interesting number; it
is the smallest number expressible as
the sum of two cubes in two different
ways." [G. H. Hardy as told in "1729
(number)"]
In "Math Wrath" Joseph Tartakovsky says about this feat, "So what?
Give me two minutes and my calculator watch, and I'll do the same
without exerting any little gray cells." I don't know how
Mr. Tartakovsky would accomplish that proof on a calculator watch, but
the following is my scheme function that enumerates numbers starting
at 1 and stops when it finds a number that is expressable in two
seperate ways by summing the cubes of two positive numbers. And it
indeeds returns 1729.
There are two areas where I would appreciate suggestions for
improvement. One area is, being new to scheme, style and idiom. The other area is around the calculations. Sisc
does not return exact numbers for roots, even when they could be. For
example (expt 27 1/3) yields 2.9999999999999996. But I do get exact
retults when cubing an exact number, (expt 3 3) yields 27. My
solution was to get the exact floor of a cube root and then test
against the cube of the floor and the cube of the floor plus one,
counting as a match if either match. This solution seems messy and hard to reason about. Is there a more straightforward way?
; Find the Hardy-Ramanujan number, which is the smallest positive
; integer that is the sum of the cubes of two positivie integers in
; two seperate ways.
(define (hardy-ramanujan-number)
(let ((how-many-sum-of-2-positive-cubes
; while i^3 + 1 < n/1
; tmp := exact_floor(cube-root(n - i^3))
; if n = i^3 + tmp^3 or n = i^3 + (tmp + 1) ^3 then count := count + 1
; return count
(lambda (n)
(let ((cube (lambda (n) (expt n 3)))
(cube-root (lambda (n) (inexact->exact (expt n 1/3)))))
(let iter ((i 1) (count 0))
(if (> (+ (expt i 3) 1) (/ n 2))
count
(let* ((cube-i (cube i))
(tmp (floor (cube-root (- n cube-i)))))
(iter (+ i 1)
(+ count
(if (or (= n (+ cube-i (cube tmp)))
(= n (+ cube-i (cube (+ tmp 1)))))
1
0))))))))))
(let iter ((n 1))
(if (= (how-many-sum-of-2-positive-cubes n) 2)
n
(iter (+ 1 n))))))
Your code looks mostly fine, I see a few very minor things to comment on:
There's no need to define cube and cube-root at the innermost scope,
Using define for internal functions makes it look a little clearer,
This is related to the second part of your question: you're using inexact->exact on a floating point number which can lead to large rationals (in the sense that you allocate a pair of two big integers) -- it would be better to avoid this,
Doing that still doesn't solve the extra test that you do -- but that's only because you're not certain if you have the right number of if you missed by 1. Given that it should be close to an integer, you can just use round and then do one check, saving you one test.
Fixing the above, and doing it in one function that returns the number when it's found, and using some more "obvious" identifier names, I get this:
(define (hardy-ramanujan-number n)
(define (cube n) (expt n 3))
(define (cube-root n) (inexact->exact (round (expt n 1/3))))
(let iter ([i 1] [count 0])
(if (> (+ (cube i) 1) (/ n 2))
(hardy-ramanujan-number (+ n 1))
(let* ([i^3 (cube i)]
[j^3 (cube (cube-root (- n i^3)))]
[count (if (= n (+ i^3 j^3)) (+ count 1) count)])
(if (= count 2) n (iter (+ i 1) count))))))
I'm running this on Racket, and it looks like it's about 10 times faster (50ms vs 5ms).
Different Schemes behave differently when it comes to exact exponentiation: some return an exact result when possible, some an inexact result in all cases. You can look at ExactExpt, one of my set of implementation contrasts pages, to see which Schemes do what.

SICP exercise 1.16, where is my bug, because it looks right to me

I've just started working through this book for fun; I wish it were homework, but I could never afford to attend MIT, and there are tons of people smarter than me anyway. :p
fast-exp is supposed to find b^n, i.e. 4^2 = 16, 3^3 = 27
(define (fast-exp b n)
(define (fast-exp-iter n-prime a)
(cond ((= n-prime 1) a)
((= (remainder n-prime 2) 1) (fast-exp-iter (- n-prime 1) (* a b)))
(else (fast-exp-iter (/ n-prime 2) (* a b b)))))
(fast-exp-iter n 1))
fast-exp 4 2; Expected 16, Actual 2
You forgot to call fast-exp. Instead, you evaluated three separate atoms. To actually evaluate the fast-exp of 4 to the 2, you'd have to write
(fast-exp 4 2)
The solution you have written here is also incorrect. e.g. Check out (fast-exp 2 6). Expected: 64, actual: 32.
Your solution is calculating wrong answers. (See http://ideone.com/quT6A) In fact, how you in principle can write a tail-recursive fast exponentiation passing only two numbers as arguments? I don't think it's even possible, because in the middle of computation you don't know what multiplier to use if you encounter odd exponent.
But I can give an example of working solution that is exactly what is expected by SICP authors (iterative process using "invariant quantity" (a * b^n), where a is initially 1)
(define (pow x y)
(define (powi acc x y)
(cond
((= y 0) acc)
((odd? y) (powi (* acc x) x (- y 1)))
(else (powi acc (* x x) (/ y 2)))))
(powi 1 x y))

Resources