Ignore elements in cts:search - full-text-search

I am having some xml documents which have a structure like this:
<root>
<intro>...</intro>
...
<body>
<p>..................
some text CO<sub>2</sub>
.................. </p>
</body>
</root>
Now I want to search all the results with phrase CO2 and also want to get results of above type in search results.
For this purpose, I am using this query -
cts:search
(fn:collection ("urn:iddn:collections:searchable"),
cts:element-query
(
fn:QName("http://iddn.icis.com/ns/fields","body"),
cts:word-query
(
"CO2",
("case-insensitive","diacritic-sensitive","punctuation-insensitive",
"whitespace-sensitive","unstemmed","unwildcarded","lang=en"),
1
)
)
,
("unfiltered", "score-logtfidf"),
0.0)
But using this I am not able to get document with CO<sub>2</sub>. I am only getting data with simple phrase CO2.
If I replace the search phrase to CO 2 then I am able to get documents only with CO<sub>2</sub> and not with CO2
I want to get combined data for both CO<sub>2</sub> and CO2 as search results.
So can I ignore <sub> by any means, or is there any other way to cater this problem?

The issue here is tokenization. "CO2" is a single word token. CO<sub>2</sub>, even with phrase-through, is a phrase of two word tokens: "CO" and "2". Just as "blackbird" does not match "black bird", so too does "CO2" not match "CO 2". The phrase-through setting just means that we're willing to look for a phrase that crosses the <sub> element boundary.
You can't splice together CO<sub>2</sub> into one token, but you might be able to use customized tokenization overrides to break "CO2" into two tokens. Define a field and define overrides for the digits as 'symbol'. This will make each digit its own token and will break "CO2" into two tokens in the context of that field. You'd then need to replace the word-query with a field-word-query.
You probably don't want this to apply anywhere in a document, so you'd be best of adding markup around these kinds of chemical phrases in your documents. Fields in general and tokenization overrides in particular will come at a performance cost. The contents of a field are indexed completely separately so the index is bigger, and the tokenization overrides mean that we have to retokenize as well, both on ingest and at query time. This will slow things down a little (not a lot).

It appears that you want to add a phrase-through configuration.
Example:
<p>to <b>be</b> or not to be</p>
A phrase-through on <b> would then be indexed as "to be or not to be"

Related

Struggling to understand user dictionary format in Elasticsearch Kuromoji tokenizer

I wanted to use Elasticsearch Kuromoji plugin for Japanese language. However, I'm struggling to understand the user_dictionary format of the file in the tokenizer. It's explained in elastic doc https://www.elastic.co/guide/en/elasticsearch/plugins/current/analysis-kuromoji-tokenizer.html as the CSV of the following form:
The Kuromoji tokenizer uses the MeCab-IPADIC dictionary by default. A user_dictionary may be appended to the default dictionary. The dictionary should have the following CSV format:
<text>,<token 1> ... <token n>,<reading 1> ... <reading n>,<part-of-speech tag>
So there is not much in the documentation about that.
When looking at the sample entry the doc shows, it can looks like below:
東京スカイツリー,東京 スカイツリー,トウキョウ スカイツリー,カスタム名詞
So, breaking it down, the first element is the dictionary text:
東京スカイツリー - Tokyo Sky Tree
東京 スカイツリー - is Tokyo Sky tree - I assuming the space here is to denote token, but wondering why only "Tokyo" is a separate token, but sky tree is not split into "sky" "tree" ?
トウキョウ スカイツリー - Then we have a reading forms. And again, "Tokyo" "sky tree" - again, why it's splited such way. Can I specify more than one reading form of the text in this column (of course if there are any)
And the last is the part of speech, which is the bit I don't understand. カスタム名詞 means "Custom noun". I assuming I can define the part of speech such as verb, noun etc. But what are the rules, should it follow some format of part of speech name. I saw examples where it's specified as "noun" - 名詞. But in this example is custom noun.
Anyone have some ideas, materials especially around Part of speech field - such as what are the available values. Additionally, what impact has this field to the overall tokenizer capabilities ?
Thanks
Do you try to define "tokyo sky tree" like this
"東京スカイツリー,東京スカイツリー,トウキョウスカイツリー,カスタム名詞"
"東京スカイツリー,東京 スカイツリー,トウキョウ スカイツリー,カスタム名詞"
I encounter another problem Found duplicate term [東京スカイツリー] in user dictionary at line [1]

Maching two words as a single word

Consider that I have a document which has a field with the following content: 5W30 QUARTZ INEO MC 3 5L
A user wants to be able to search for MC3 (no space) and get the document; however, search for MC 3 (with spaces) should also work. Moreover, there can be documents that have the content without spaces and that should be found when querying with a space.
I tried indexing without spaces (e.g. 5W30QUARTZINEOMC35L), but that does not really work as using a wildcard search I would match too much, e.g. MC35 would also match, and I only want to match two exact words concatenated together (as well as exact single word).
So far I'm thinking of additionally indexing all combinations of two words, e.g. 5W30QUARTZ, QUARTZINEO, INEOMC, MC3, 35L. However, does Elasticsearch have a native solution for this?
I'm pretty sure what you want can be done with the shingle token filter. Depending on your mapping, I would imagine you'd need to add a filter looking something like this to your content field to get your tokens indexed in pairs:
"filter_shingle":{
"type":"shingle",
"max_shingle_size":2,
"min_shingle_size":2,
"output_unigrams":"true"
}
Note that this is also already the default configuration, I just added it for clarity.

ElasticSearch Nest AutoComplete based on words split by whitespace

I have AutoComplete working with ElasticSearch (Nest) and it's fine when the user types in the letters from the begining of the phrase but I would like to be able to use a specialized type of auto complete if it's possible that caters for words in a sentence.
To clarify further, my requirement is to be able to "auto complete" like such:
Imagine the full indexed string is "this is some title". When the user types in "th", this comes back as a suggestion with my current code.
I would also like the same thing to be returned if the user types in "som" or "title" or any letters that form a word (word being classified as a string between two spaces or the start/end of the string).
The code I have is:
var result = _client.Search<ContentIndexable>(
body => body
.Index(indexName)
.SuggestCompletion("content-suggest" + Guid.NewGuid(),
descriptor =>
descriptor
.OnField(t => t.Title.Suffix("completion"))
.Text(searchTerm)
.Size(size)));
And I would like to see if it would be possible to write something that matches my requirement using SuggestCompletion (and not by doing a match query).
Many thanks,
Update:
This question already has an answer here but I leave it here since the title/description is probably a little easier to search by search engines.
The correct solution to this problem can be found here:
Elasticsearch NEST client creating multi-field fields with completion
#Kha i think it's better to use the NGram Tokenizer
So you should use this tokenizer when you create the mapping.
If you want more info, and maybe an example write back.

Amazon Cloudsearch not searching with partial string

I'm testing Amazon Cloudsearch for my web application and i'm running into some strange issues.
I have the following domain indexes: name, email, id.
For example, I have data such as: John Doe, John#example.com, 1
When I search for jo I get nothing. If I search for joh I still get nothing, But if I search for john then I get the above document as a hit. Why is it not getting when I put partial strings? I even put suggestors on name and email with fuzzy matching enabled. Is there something else i'm missing? I read the below on this:
http://docs.aws.amazon.com/cloudsearch/latest/developerguide/searching-text.html
http://docs.aws.amazon.com/cloudsearch/latest/developerguide/searching.html
http://docs.aws.amazon.com/cloudsearch/latest/developerguide/searching-compound-queries.html
I'm doing the searches using boto as well as with the form on AWS page.
What you're trying to do -- finding "john" by searching "jo" -- is a called a prefix search.
You can accomplish this either by searching
(prefix field=name 'jo')
or
q=jo*
Note that if you use the q=jo* method of appending * to all your queries, you may want to do something like q=jo* |jo because john* will not match john.
This can seem a little confusing but imagine if google gave back results for prefix matches: if you searched for tort and got back a mess of results about tortoises and torture instead of tort (a legal term), you would be very confused (and frustrated).
A suggester is also a viable approach but that's going to give you back suggestions (like john, jordan and jostle rather than results) that you would then need to search for; it does not return matching documents to you.
See "Searching for Prefixes in Amazon CloudSearch" at http://docs.aws.amazon.com/cloudsearch/latest/developerguide/searching-text.html
Are your index field types "Text"? If they are just "Literals", they have to be an exact match.
I think you must have your name and email fields set as the literal type instead of the text type, otherwise a simple text search of 'jo' or 'Joh' should've found the example document.
While using a prefix search may have solved your problem (and that makes sense if the fields are set as the literal type), the accepted answer isn't really correct. The notion that it's "like a google search" isn't based on anything in the documentation. It actually contradicts the example they use, and in general muddies up what's possible with the service. From the docs:
When you search text and text-array fields for individual terms, Amazon CloudSearch finds all documents that contain the search terms anywhere within the specified field, in any order. For example, in the sample movie data, the title field is configured as a text field. If you search the title field for star, you will find all of the movies that contain star anywhere in the title field, such as star, star wars, and a star is born. This differs from searching literal fields, where the field value must be identical to the search string to be considered a match.

Highlighting a query word in a document

I have a document and a query term. I want to
find the query term in the document.
Pad each occurrence of the query term with a certain text marker.
For example
Text: I solemnly swear that I am upto no good.
Query: swear
Output: I solemnly MATCHSTART swear MATCHEND that I am upto no good.
Assuming that I have multiple query words and a large document, now can I do this efficiently.
I did go over various links on the internet but couldn't find anything very conclusive or definite. Moreover, this is just a programming question and has nothing to do with search engine development or information retrieval.
Any help would be appreciated. Thanks.
If each your query is word (some substring, does not contains SP/TAB/NL, etc), and allowed with very low probability false positive (when you mark some word, omitted in the query set) - you can use Bloom filter: http://en.wikipedia.org/wiki/Bloom_filter
First, load your query words into Bloom filter, and thereafter scan document, and match each word in the filter. If search result is positive - mark this word.
You can use my implementation of bloom filter: http://olegh.cc.st/src/bloom.c.txt
In Python:
text = "I solemnly swear I am up to no good" #read in however you like.
query = input("Query: ")
text.replace(" "+query" "," MATCHSTART "+query+" MATCHEND ")
OUTPUT:
'I solemnly MATCHSTART swear MATCHEND that I am up to no good.'
You could also use regex, but that's slower, so I just used string concat to add whitespace to the beginning and end of the word (so as not to match "swears" or "swearing" or "sportswear". This is easily translatable to whatever language you prefer.

Resources