Isabelle cardinality - set

I have a relatively simple question, its causing me some problems in isabelle.
Im trying to prove the following:
∃ b . inv_Board b
The board is a set. The invariant on board is:
card b <= FINISHED
Where finished is an int value of 24. I'm using my own types though so its actually a VDMNat type and I have to cast it like so:
int (card b) <= FINISHED
Sledgehammer isn't working, I have 1 subgoal:
∃b. int (card b) ≤ FINISHED
any ideas?

If »FINISHED« is an int value of 24, then there should be an equational theorem ‹FINISHED = 24›.
Then you can proceed roughly like
have "int (card {}) ≤ FINISHED"
by (simp add: ‹FINISHED = 24›)
then show "∃b. int (card b) ≤ FINISHED"
..

Related

Algorithm to precisely compare two exponentiations for very large integers (order of 1 billion)

We want to compare a^b to c^d, and tell if the first is smaller, greater, or equal (where ^ denotes exponentiation).
Obviously, for very large numbers, we cannot explicitely compute these values.
The most common approach in this situation is to apply log on both sides and compare b * log(a) to d * log(c). The issue here is that logs are floating-point operations, and as such we cannot trust our answer with 100% confidence (there might be some values which are incredibly close, and because of floating-point error we get a wrong answer).
Is there an algorithm for solving this problem? I've been scouring the intrernet for this, but I can only find solutions which work for particular cases only (e.g. in which one exponent is a multiple of another), or which use floating point in some way (logarithms, division) etc.
This is sort of two questions in one:
Are they equal?
If not, which one is greater?
As Peter O. observes, it's easiest to build in a language that provides an arbitrary-precision fraction type. I'll use Python 3.
Let's assume without loss of generality that a ≤ c (swap if necessary) and b is relatively prime to d (divide both by the greatest common divisor).
To get at the core of the question, I'm going to assume that a, c > 0 and b, d ≥ 0. Removing this assumption is tedious but not difficult.
Equality test
There are some easy cases where a = 1 or b = 0 or c = 1 or d = 0.
Separately, necessary conditions for a^b = c^d are
i. b ≥ d, since otherwise b < d, which together with a ≤ c implies a^b < c^d;
ii. a is a divisor of c, since we know from (i) that a^b = c^d is a divisor of c^b = c^(b−d) c^d.
When these conditions hold, we can divide through by a^d to reduce the problem to testing whether a^(b−d) = (c/a)^d.
In Python 3:
def equal_powers(a, b, c, d):
while True:
lhs_is_one = a == 1 or b == 0
rhs_is_one = c == 1 or d == 0
if lhs_is_one or rhs_is_one:
return lhs_is_one and rhs_is_one
if a > c:
a, b, c, d = c, d, a, b
if b < d:
return False
q, r = divmod(c, a)
if r != 0:
return False
b -= d
c = q
def test_equal_powers():
for a in range(1, 25):
for b in range(25):
for c in range(1, 25):
for d in range(25):
assert equal_powers(a, b, c, d) == (a ** b == c ** d)
test_equal_powers()
Inequality test
Once we've established that the two quantities are not equal, it's time to figure out which one is greater. (Without the equality test, the code here could run forever.)
If you're doing this for real, you should consult an actual reference on computing elementary functions. I'm just going to try to do the simplest thing that works.
Time for a calculus refresher. We have the Taylor series
−log x = (1−x) + (1−x)^2/2 + (1−x)^3/3 + (1−x)^4/4 + ...
To get a lower bound, truncate the series. To get an upper bound, we can truncate but replace the final term (1−x)^n/n with (1−x)^n/n (1/x), since
(1−x)^n/n (1/x)
= (1−x)^n/n (1 + (1−x) + (1−x)^2 + ...)
= (1−x)^n/n + (1−x)^(n+1)/n + (1−x)^(n+2)/n + ...
> (1−x)^n/n + (1−x)^(n+1)/(n+1) + (1−x)^(n+2)/(n+2) + ...
To get a good convergence rate, we're going to want 0.5 ≤ x < 1, which we can achieve by dividing x by a power of two.
In Python, we'll represent a real number as an infinite generator of shrinking intervals that contain the true value. Once the intervals for b log a and d log c are disjoint, we can determine how they compare.
import fractions
def minus(x, y):
while True:
x_lo, x_hi = next(x)
y_lo, y_hi = next(y)
yield x_lo - y_hi, x_hi - y_lo
def times(b, x):
for lo, hi in x:
yield b * lo, b * hi
def restricted_log(a):
series = 0
n = 0
numerator = 1
while True:
n += 1
numerator *= 1 - a
series += fractions.Fraction(numerator, n)
yield -(series + fractions.Fraction(numerator * (1 - a), (n + 1) * a)), -series
def log(a):
n = 0
while a >= 1:
a = fractions.Fraction(a, 2)
n += 1
return minus(restricted_log(a), times(n, restricted_log(fractions.Fraction(1, 2))))
def less_powers(a, b, c, d):
lhs = times(b, log(a))
rhs = times(d, log(c))
while True:
lhs_lo, lhs_hi = next(lhs)
rhs_lo, rhs_hi = next(rhs)
if lhs_hi < rhs_lo:
return True
if rhs_hi < lhs_lo:
return False
def test_less_powers():
for a in range(1, 10):
for b in range(10):
for c in range(1, 10):
for d in range(10):
if a ** b != c ** d:
assert less_powers(a, b, c, d) == (a ** b < c ** d)
test_less_powers()

The way of thinking in multiply 2 natural numbers (problem solving”)

Prove the correctness of the following recursive algorithm to multiply two natural numbers, for all integer constants c ≥ 2.
function multiply(y,z) comment Return the product yz.
1. if z = 0 then return(0) else
2. return(multiply(cy, z/c) + y · (z mod c))
I saw this algorithm in “Algorithm Design Manual”.
I know why it works correctly, but I want to know how this algorithm came to be. Is that a good way to think of multiply two natural number with a constant c?
(multiply(cy, z/c) + y · (z mod c))
When c is the base of your representation (like decimal), then this is how multiplication can be done "manually". It's the "shift and add" method.
In c-base cy is a single shift of y to the left (i.e. adding a zero at the right); and z/c is a single shift of z to the right: the right most digit is lost.
That lost digit is actually z mod c, which is multiplied with y separately.
Here is an example with c = 10, where the apostrophe signifies the value of variables in a recursive call.
We perform the multiplication with y for each separate digit of z (retrieved with z mod c). Each next product found in this way is written shifted one more place to the left. Usually the 0 is not padded at the right of this shifted product, but it is silently assumed:
354 y
x 29 z
----
3186 y(z mod c) = 354·9 = 3186
+ 708 y'(z' mod c) = yc(z/c mod c) = 3540·2 = 7080
------
10266
So the algorithm just relies on the mathematical basis for this "shift and add" method in a given c-base.

Euclid's algorithm using until

I'm a beginner in Haskell, just started now learning about folds and what not, in college, first year.
One of the problems I'm facing now is to define Euclid's algorithm using the until function.
Here's the Euclid's recursive definition (EDIT: just to show how euclid works, I'm trying to define euclid's without the recursive. Just using until):
gcd a b = if b == 0 then a else gcd b (a `mod` b)
Here's what i have using until:
gcd a b = until (==0) (mod a ) b
Obviously this doesn't make any sense since it's always going to return 0, as that is my stopping point instead of printing the value of a when b == 0. I can't for the life of me though figure out how to get the value of a.
Any help is appreciated.
Thank you in advance guys.
Hints:
Now
until :: (a -> Bool) -> (a -> a) -> a -> a
so we need a function that we can apply repeatedly until a condition holds, but we have two numbers a and b, so how can we do that?
The solution is to make the two numbers into one value, (a,b), so think of gcd this way:
uncurriedGCD (a,b) = if b == 0 then (a,a) else uncurriedGCD (b,a `mod` b)
Now you can make two functions, next & check and use them with until.
Helpers for until:
next (a,b) = (b,a `mod` b)
check (a,b) = b == 0
This means that we now could have written uncurriedGCD using until.
Answer:
For example:
ghci> until check next (6,4)
(2,0)
ghci> until check next (12,18)
(6,0)
So we can define:
gcd a b = c where (c,_) = until check next (a,b)
giving:
ghci> gcd 20 44
4
ghci> gcd 60 108
12
What the Euclid's algorithm says is this: for (a, b), computing (b, mod a b) until (the new) b equals zero. This can be translated directly to an implementation using until like this:
myGcd a b = until (\(x, y) -> y == 0) (\(x, y) -> (y, x `mod` y)) (a, b)

Wine Tasting problem

I've spent almost all competition time(3 h) for solving this problem. In vain :( Maybe you could help me to find the solution.
A group of Facebook employees just had a very successful product launch. To celebrate, they have decided to go wine tasting. At the vineyard, they decide to play a game. One person is given some glasses of wine, each containing a different wine. Every glass of wine is labelled to indicate the kind of wine the glass contains. After tasting each of the wines, the labelled glasses are removed and the same person is given glasses containing the same wines, but unlabelled. The person then needs to determine which of the unlabelled glasses contains which wine. Sadly, nobody in the group can tell wines apart, so they just guess randomly. They will always guess a different type of wine for each glass. If they get enough right, they win the game. You must find the number of ways that the person can win, modulo 1051962371.
Input
The first line of the input is the number of test cases, N. The next N lines each contain a test case, which consists of two integers, G and C, separated by a single space. G is the total number of glasses of wine and C is the minimum number that the person must correctly identify to win.
Constraints
N = 20
1 ≤ G ≤ 100
1 ≤ C ≤ G
Output
For each test case, output a line containing a single integer, the number of ways that the person can win the game modulo 1051962371.
Example input
5
1 1
4 2
5 5
13 10
14 1
Example output
1
7
1
651
405146859
Here's the one that doesn't need the prior knowledge of Rencontres numbers. (Well, it's basically the proof a formula from the wiki but I thought I'd share it anyway.)
First find f(n): the number of permutations of n elements that don't have a fixed point. It's simple by inclusion-exclusion formula: the number of permutations that fix k given points is (n-k)!, and these k points can be chosen in C(n,k) ways. So, f(n) = n! - C(n,1)(n-1)! + C(n,2)(n-2)! - C(n,3)(n-3)! + ...
Now find the number of permutations that have exactly k fixed points. These points can be chosen in C(n,k) ways and the rest n-k points can be rearranged in f(n-k) ways. So, it's C(n,k)f(n-k).
Finally, the answer to the problem is the sum of C(g,k)f(g-k) over k = c, c+1, ..., g.
My solution involved the use of Rencontres Numbers.
A Rencontres Number D(n,k) is the number of permutations of n elements where exactly k elements are in their original places. The problem asks for at least k elemenets, so I just took the sum over k, k+1,...,n.
Here's my Python submission (after cleaning up):
from sys import stdin, stderr, setrecursionlimit as recdepth
from math import factorial as fact
recdepth(100000)
MOD=1051962371
cache=[[-1 for i in xrange(101)] for j in xrange(101)]
def ncr(n,k):
return fact(n)/fact(k)/fact(n-k)
def D(n,k):
if cache[n][k]==-1:
if k==0:
if n==0:
cache[n][k]=1
elif n==1:
cache[n][k]=0
else:
cache[n][k]= (n-1)*(D(n-1,0)+D(n-2,0))
else:
cache[n][k]=ncr(n,k)*D(n-k,0)
return cache[n][k]
return cache[n][k]
def answer(total, match):
return sum(D(total,i) for i in xrange(match,total+1))%MOD
if __name__=='__main__':
cases=int(stdin.readline())
for case in xrange(cases):
stderr.write("case %d:\n"%case)
G,C=map(int,stdin.readline().split())
print answer(G,C)
from sys import stdin, stderr, setrecursionlimit as recdepth
from math import factorial as fact
recdepth(100000)
MOD=1051962371
cache=[[-1 for i in xrange(101)] for j in xrange(101)]
def ncr(n,k):
return fact(n)/fact(k)/fact(n-k)
def D(n,k):
if cache[n][k]==-1:
if k==0:
if n==0:
cache[n][k]=1
elif n==1:
cache[n][k]=0
else:
cache[n][k]= (n-1)*(D(n-1,0)+D(n-2,0))
else:
cache[n][k]=ncr(n,k)*D(n-k,0)
return cache[n][k]
return cache[n][k]
def answer(total, match):
return sum(D(total,i) for i in xrange(match,total+1))%MOD
if __name__=='__main__':
cases=int(stdin.readline())
for case in xrange(cases):
stderr.write("case %d:\n"%case)
G,C=map(int,stdin.readline().split())
print answer(G,C)
Like everyone else, I computed the function that I now know is Rencontres Numbers, but I derived the recursive equation myself in the contest. Without loss of generality, we simply assume the correct labels of wines are 1, 2, .., g, i.e., not permuted at all.
Let's denote the function as f(g,c). Given g glasses, we look at the first glass, and we could either label it right, or label it wrong.
If we label it right, we reduce the problem to getting c-1 right out of g-1 glasses, i.e., f(g-1, c-1).
If we label it wrong, we have g-1 choices for the first glass. For the remaining g-1 glasses, we must get c glasses correct, but this subproblem is different from the f we're computing, because out of the g-1 glasses, there's already a mismatching glass. To be more precise, for the first glass, our answer is j instead of the correct label 1. Let's assume there's another function h that computes it for us.
So we have f(g,c) = f(g-1,c-1) + (g-1) * h(g-1, c).
Now to compute h(g,c), we need to consider two cases at the jth glass.
If we label it 1, we reduce the problem to f(g-1,c).
If we label it k, we have g-1 choices, and the problem is reduced to h(g-1,c).
So we have h(g,c) = f(g-1,c) + (g-1) * h(g-1,c).
Here's the complete program in Haskell, with memoization and some debugging support.
import Control.Monad
import Data.MemoTrie
--import Debug.Trace
trace = flip const
add a b = mod (a+b) 1051962371
mul a b = mod (a*b) 1051962371
main = do
(_:input) <- liftM words getContents
let map' f [] = []
map' f (a:c:xs) = f (read a) (read c) : map' f xs
mapM print $ map' ans input
ans :: Integer -> Integer -> Integer
ans g c = foldr add 0 $ map (f g) [c..g]
memoF = memo2 f
memoH = memo2 h
-- Exactly c correct in g
f :: Integer -> Integer -> Integer
f g c = trace ("f " ++ show (g,c) ++ " = " ++ show x) x
where x = if c < 0 || g < c then 0
else if g == c then 1
else add (memoF (g-1) (c-1)) (mul (g-1) (memoH (g-1) c))
-- There's one mismatching position in g positions
h :: Integer -> Integer -> Integer
h g c = trace ("h " ++ show (g,c) ++ " = " ++ show x) x
where x = if c < 0 || g < c then 0
else add (memoF (g-1) c) (mul (g-1) (memoH (g-1) c))

Godel, Escher, Bach Typographical Number Theory (TNT) puzzles and solutions

In chapter 8 of Godel, Escher, Bach by Douglas Hofstader, the reader is challenged to translate these 2 statements into TNT:
"b is a power of 2"
and
"b is a power of 10"
Are following answers correct?:
(Assuming '∃' to mean 'there exists a number'):
∃x:(x.x = b)
i.e. "there exists a number 'x' such that x multiplied x equals b"
If that is correct, then the next one is equally trivial:
∃x:(x.x.x.x.x.x.x.x.x.x = b)
I'm confused because the author indicates that they are tricky and that the second one should take hours to solve; I must have missed something obvious here, but I can't see it!
In general, I would say "b is a power of 2" is equivalent to "every divisor of b except 1 is a multiple of 2". That is:
∀x((∃y(y*x=b & ¬(x=S0))) → ∃z(SS0*z=x))
EDIT: This doesnt work for 10 (thanks for the comments). But at least it works for all primes. Sorry. I think you have to use some sort of encoding sequences after all. I suggest "Gödel's Incompleteness Theorems" by Raymond Smullyan, if you want a detailed and more general approach to this.
Or you can encode Sequences of Numbers using the Chinese Remainder Theorem, and then encode recursive definitions, such that you can define Exponentiation. In fact, that is basically how you can prove that Peano Arithmetic is turing complete.
Try this:
D(x,y)=∃a(a*x=y)
Prime(x)=¬x=1&∀yD(y,x)→y=x|y=1
a=b mod c = ∃k a=c*k+b
Then
∃y ∃k(
∀x(D(x,y)&Prime(x)→¬D(x*x,y)) &
∀x(D(x,y)&Prime(x)&∀z(Prime(z)&z<x→¬D(z,y))→(k=1 mod x)) &
∀x∀z(D(x,y)&Prime(x)&D(z,y)&Prime(z)&z<x&∀t(z<t<x→¬(Prime(t)&D(t,y)))→
∀a<x ∀c<z ((k=a mod x)&(k=c mod z)-> a=c*10))&
∀x(D(x,y)&Prime(x)&∀z(Prime(z)&z>x→¬D(z,y))→(b<x & (k=b mod x))))
should state "b is Power of 10", actually saying "there is a number y and a number k such that y is product of distinct primes, and the sequence encoded by k throug these primes begins with 1, has the property that the following element c of a is 10*a, and ends with b"
Your expressions are equivalent to the statements "b is a square number" and "b is the 10th power of a number" respectively. Converting "power of" statements into TNT is considerably trickier.
There's a solution to the "b is a power of 10" problem behind the spoiler button in skeptical scientist's post here. It depends on the chinese remainder theorem from number theory, and the existence of arbitrarily-long arithmetic sequences of primes. As Hofstadter indicated, it's not easy to come up with, even if you know the appropriate theorems.
In expressing "b is a power of 10", you actually do not need the Chinese Remainder Theorem and/nor coding of finite sequences. You can alternatively work as follows (we use the usual symbols as |, >, c-d, as shortcuts for formulas/terms with obvious meaning):
For a prime number p, let us denote EXP(p,a) some formula in TNT saying that "p is a prime and a is a power of p". We already know, how to build one. (For technical reasons, we do not consider S0 to be a power of p, so ~EXP(p,S0).)
If p is a prime, we define EXPp(c,a) ≖ 〈EXP(p,a) ∧ (c-1)|(a-1)〉. Here, the symbol | is a shortcut for "divides" which can be easily defined in TNT using one existencial quantifier and multiplication; the same holds for c-1 (a-1, resp.) which means "the d such that Sd=c" (Sd=a, resp.).
If EXP(p,c) holds (i.e. c is a power of p), the formula EXPp(c,a) says that "a is a power of c" since a ≡ 1 (mod c-1) then.
Having a property P of numbers (i.e. nonnegative integers), there is a way how to refer, in TNT, to the smallest number with this property: 〈P(a) ∧ ∀c:〈a>c → ~P(a)〉〉.
We can state the formula expressing "b is a power of 10" (for better readability, we omit the symbols 〈 and 〉, and we write 2 and 5 instead of SS0 and SSSSS0):
∃a:∃c:∃d: (EXP(2,a) ∧ EXP(5,c) ∧ EXP(5,d) ∧ d > b ∧ a⋅c=b ∧ ∀e:(e>5 ∧ e|c ∧ EXP5(e,c) → ~EXP5(e,d)) ∧ ∀e:("e is the smallest such that EXP5(c,e) ∧ EXP5(d,e)" → (d-2)|(e-a))).
Explanation: We write b = a⋅c = 2x⋅5y (x,y>0) and choose d=5z>b in such a way that z and y are coprime (e.g. z may be a prime). Then "the smallest e..." is equal to (5z)y = dy ≡ 2y (mod d-2), and (d-2)|(e-a) implies a = 2x = e mod (d-2) = 2y (we have 'd-2 > 2y' and 'd-2 > a', too), and so x = y.
Remark: This approach can be easily adapted to define "b is a power of n" for any number n with a fixed decomposition a1a2...ak, where each ai is a power of a prime pi and pi = pj → i=j.
how about:
∀x: ∀y: (SSx∙y = b → ∃z: z∙SS0 = SSx)
(in English: any factor of b that is ≥ 2 must itself be divisible by 2; literally: for all natural numbers x and y, if (2+x) * y = b then this implies that there's a natural number z such that z * 2 = (2+x). )
I'm not 100% sure that this is allowed in the syntax of TNT and propositional calculus, it's been a while since I've perused GEB.
(edit: for the b = 2n problem at least; I can see why the 10n would be more difficult as 10 is not prime. But 11n would be the same thing except replacing the one term "SS0" with "SSSSSSSSSSS0".)
Here's what I came up with:
∀c:∃d:<(c*d=b)→<(c=SO)v∃e:(d=e*SSO)>>
Which translates to:
For all numbers c, there exists a number d, such that if c times d equals b then either c is 1 or there exists a number e such that d equals e times 2.
Or
For all numbers c, there exists a number d, such that if b is a factor of c and d then either c is 1 or d is a factor of 2
Or
If the product of two numbers is b then one of them is 1 or one of them is divisible by 2
Or
All divisors of b are either 1 or are divisible by 2
Or
b is a power of 2
For the open expression meaning that b is a power of 2, I have ∀a:~∃c:(S(Sa ∙ SS0) ∙ Sc) = b
This effectively says that for all a, S(Sa ∙ SS0) is not a factor of b. But in normal terms, S(Sa ∙ SS0) is 1 + ((a + 1) * 2) or 3 + 2a. We can now reword the statement as "no odd number that is at least 3 is a factor of b". This is true if and only if b is a power of 2.
I'm still working on the b is a power of 10 problem.
I think that most of the above have only shown that b must be a multiple of 4. How about this: ∃b:∀c:<<∀e:(c∙e) = b & ~∃c':∃c'':(ssc'∙ssc'') = c> → c = 2>
I don't think the formatting is perfect, but it reads:
There exists b, such that for all c, if c is a factor of b and c is prime, then c equal 2.
Here is what I came up with for the statement "b is a power of 2"
∃b: ∀a: ~∃c: ((a * ss0) + sss0) * c = b
I think this says "There exists a number b, such that for all numbers a, there does not exist a number c such that (a * 2) + 3 (in other words, an odd number greater than 2) multiplied by c, gives you b." So, if b exists, and can't be zero, and it has no odd divisors greater than 2, then wouldn't b necessarily be 1, 2, or another power of 2?
my solution for b is a power of two is :
∀x: ∃y x.y=b ( isprime(x) => x = SS0 )
isprime() should not be hard to write.

Resources