According to Postgres pg_stat_statements documentation:
The module requires additional shared memory proportional to
pg_stat_statements.max. Note that this memory is consumed whenever the
module is loaded, even if pg_stat_statements.track is set to none.
and also:
The representative query texts are kept in an external disk file, and
do not consume shared memory. Therefore, even very lengthy query texts
can be stored successfully. However, if many long query texts are
accumulated, the external file might grow unmanageably large.
From these it is unclear what the actual memory cost of a high pg_stat_statements.max would be - say at 100k or 500k (default is 5k). Is it safe to set the levels that high, would could be the negative repercussions of such high levels? Would aggregating statistics into an external database via logstash/fluentd be a preferred approach above certain sizes?
1.
from what I have read, it hashes the query and keeps it in DB, saving the text to FS. So next concern is more expected then overloaded shared memory:
if many long query texts are accumulated, the external file might grow
unmanageably large
the hash of text is so much smaller then text, that I think you should not worry about extension memory consumption comparing long queries. Especially knowing that extension uses Query Analyser (which will work for EVERY query ANYWAY):
the queryid hash value is computed on the post-parse-analysis
representation of the queries
Setting pg_stat_statements.max 10 times bigger should take 10 times more shared memory I believe. The grows should be linear. It does not say so in documentation, but logically should be so.
There is no answer if it is safe or not to set setting to distinct value, because there is no data on other configuration values and HW you have. But as growth should be linear, consider this answer: "if you set it to 5K, and query runtime has grown almost nothing, then setting it to 50K will prolong it almost nothing times ten". BTW, my question - who is gong to dig 50000 slow statements? :)
2.
This extension already makes a pre-aggregation for "dis-valued" statement. You can select it straight on DB, so moving data to other db and selecting it there will only give you the benefit of unloading the original DB and loading another. In other words you save 50MB for a query on original, but spend same on another. Does it make sense? For me - yes. This is what I do myself. But I also save execution plans for statement (which is not a part of pg_stat_statements extension). I believe it depends on what you have and what you have. Definitely there is no need for that just because of a number of queries. Again unless you have so big file that extension can
As a recovery method if that happens, pg_stat_statements may choose to
discard the query texts, whereupon all existing entries in the
pg_stat_statements view will show null query fields
Related
I have a file that could contain about 3 million records. Certain records of this file will need to be updated multiple times throughout the run of the program. If I need to pull specific records from this file, which of the following is more efficient:
Indexed VSAM search
Indexed flat file with a COBOL search all
Buffering all of the data into working storage and writing a loop to handle the search
Obviously, if you can buffer all of the data into memory (and if the host system can support a working-set of pages which is big enough to allow all of it to actually remain in RAM without paging, then this would probably be the fastest possible approach.
But, be very careful to consider "hidden disk-I/O" caused by the virtual-memory paging subsystem! If the requested "in-memory" data is, in fact, not "in memory," a page-fault will occur and your process will stop in its tracks until the page has been retrieved. (And if "page stealing" occurs, well, you're in trouble. Your "in-memory" strategy just turned into a possibly very-inefficient(!) disk-based one. If keys are distributed randomly, then your process has a gigantic working-set that it is accessing randomly. If all of that memory is not actually in memory, and will stay there, you're in trouble.
If you are making updates to a large file, consider sorting the updates-delta file before processing it, so that all occurrences of the same key will be adjacent. You can now write your COBOL program to take advantage of this (and, of course, to abend if an out-of-sequence record is ever detected!). If the key in "this" record is identical to the key of the "previous" one, then you do not need to re-read the record. (And, you do not actually need to write the old record, until the key does change.) As the indexed-file access method is presented with the succession of keys, each key is likely to be "close to" the one previously-requested, such that some of the necessary index-tree pages will already be in-memory. Obviously, you will need to benchmark this, but the amount of time spent sorting the file can be far less than the amount of time spent in index-lookups. (Which actually can be considerable.)
The answer of Mike has the important issue about "hidden I/O" in (depends on the machine, configuration, amount of data)...
If you very likely need to update many records the option Mike suggest is the most useful one.
If you very likely need to update not much records (I'd guess you're likely below 2%) another approach can be quite faster (needs a benchmark !):
read every key via indexed VSAM search
store the changed record in memory (big occurs table), if you will only change some values and the record is quite big then only store all possible changed values + key in the table without an actual REWRITE
before doing a VSAM search: look in your occurs table if you read the key
already, take the values either from there or get a new one
...
at program end: go through your occurs and REQRITE all records (if you have the complete record a REWRITE is enough, otherwise you'd need a READ first to get the complete record)
Performance is often: "know your data and possible program flow, then try the best 2-3 approach, benchmark and decide".
How many views per bucket is too much, assuming a large amount of data in the bucket (>100GB, >100M documents, >12 document types), and assuming each view applies only to one document type? Or asked another way, at what point should some document types be split into separate buckets to save on the overhead of processing all views on all document types?
I am having a hard time deciding how to split my data into couchbase buckets, and the performance implications of the views required on the data. My data consists of more than a dozen relational DBs, with at least half with hundreds of millions of rows in a number of tables.
The http://www.couchbase.com/docs/couchbase-manual-2.0/couchbase-views-writing-bestpractice.html doc section "using document types" seems to imply having multiple document types in the same bucket is not ideal because views on specific document types are updated for all documents, even those that will never match the view. Indeed, it suggests separating data into buckets to avoid this overhead.
Yet there is a limit of 10 buckets per cluster for performance reasons. My only conclusion therefore is that each cluster can handle a maximum of 10 large collections of documents efficiently. Is this accurate?
Tug's advice was right on and allow me to add some perspective as well.
A bucket can be considered most closely related to (though not exactly) a "database instantiation" within the RDMS world. There will be multiple tables/schemas within that "database" and those can all be combined within a bucket.
Think about a bucket as a logical grouping of data that all shares some common configuration parameters (RAM quota, replica count, etc) and you should only need to split your data into multiple buckets when you need certain datasets to be controlled separately. Other reasons are related to very different workloads to different datasets or the desire to be able to track the workload to those datasets separately.
Some examples:
-I want to control the caching behavior for one set of data differently than another. For instance, many customers have a "session" bucket that they want always in RAM whereas they may have a larger, "user profile" bucket that doesn't need all the data cached in RAM. Technically these two data sets could reside in one bucket and allow Couchbase to be intelligent about which data to keep in RAM, but you don't have as much guarantee or control that the session data won't get pushed out...so putting it in its own bucket allows you to enforce that. It also gives you the added benefit of being able to monitor that traffic separately.
-I want some data to be replicated more times than others. While we generally recommend only one replica in most clusters, there are times when our users choose certain datasets that they want replicated an extra time. This can be controlled via separate buckets.
-Along the same lines, I only want some data to be replicated to another cluster/datacenter. This is also controlled per-bucket and so that data could be split to a separate bucket.
-When you have fairly extreme differences in workload (especially around the amount of writes) to a given dataset, it does begin to make sense from a view/index perspective to separate the data into a separate bucket. I mention this because it's true, but I also want to be clear that it is not the common case. You should use this approach after you identify a problem, not before because you think you might.
Regarding this last point, yes every write to a bucket will be picked up by the indexing engine but by using document types within the JSON, you can abort the processing for a given document very quickly and it really shouldn't have a detrimental impact to have lots of data coming in that doesn't apply to certain views. If you don't mind, I'm particularly curious at which parts of the documentation imply otherwise since that certainly wasn't our intention.
So in general, we see most deployments with a low number of buckets (2-3) and only a few upwards of 5. Our limit of 10 comes from some known CPU and disk IO overhead of our internal tracking of statistics (the load or lack thereof on a bucket doesn't matter here). We certainly plan to reduce this overhead with future releases, but that still wouldn't change our recommendation of only having a few buckets. The advantages of being able to combine multiple "schemas" into a single logical grouping and apply view/indexes across that still exist regardless.
We are in the process right now of coming up with much more specific guidelines and sizing recommendations (I wrote those first two blogs as a stop-gap until we do).
As an initial approach, you want to try and keep the number of design documents around 4 because by default we process up to 4 in parallel. You can increase this number, but that should be matched by increased CPU and disk IO capacity. You'll then want to keep the number of views within each document relatively low, probably well below 10, since they are each processed in serial.
I recently worked with one user who had an fairly large amount of views (around 8 design documents and some dd's with nearly 20 views) and we were able to drastically bring this down by combining multiple views into one. Obviously it's very application dependent, but you should try to generate multiple different "queries" off of one index. Using reductions, key-prefixing (within the views), and collation, all combined with different range and grouping queries can make a single index that may appear crowded at first, but is actually very flexible.
The less design documents and views you have, the less disk space, IO and CPU resources you will need. There's never going to be a magic bullet or hard-and-fast guideline number unfortunately. In the end, YMMV and testing on your own dataset is better than any multi-page response I can write ;-)
Hope that helps, please don't hesitate to reach out to us directly if you have specific questions about your specific use case that you don't want published.
Perry
As you can see from the Couchbase documentation, it is not really possible to provide a "universal" rules to give you an exact member.
But based on the best practice document that you have used and some discussion(here) you should be able to design your database/views properly.
Let's start with the last question:
YES the reason why Couchbase advice to have a small number of bucket is for performance - and more importantly resources consumption- reason. I am inviting you to read these blog posts that help to understand what's going on "inside" Couchbase:
Sizing 1: http://blog.couchbase.com/how-many-nodes-part-1-introduction-sizing-couchbase-server-20-cluster
Sizing 2: http://blog.couchbase.com/how-many-nodes-part-2-sizing-couchbase-server-20-cluster
Compaction: http://blog.couchbase.com/compaction-magic-couchbase-server-20
So you will see that most of the "operations" are done by bucket.
So let's now look at the original question:
yes most the time your will organize the design document/and views by type of document.
It is NOT a problem to have all the document "types" in a single(few) buckets, this is in fact the way your work with Couchbase
The most important part to look is, the size of your doc (to see how "long" will be the parsing of the JSON) and how often the document will be created/updated, and also deleted, since the JS code of the view is ONLY executed when you create/change the document.
So what you should do:
1 single bucket
how many design documents? (how many types do you have?)
how any views in each document you will have?
In fact the most expensive part is not during the indexing or quering it is more when you have to rebalance the data and indices between nodes (add, remove , failure of nodes)
Finally, but it looks like you already know it, this chapter is quite good to understand how views works (how the index is created and used):
http://www.couchbase.com/docs/couchbase-manual-2.0/couchbase-views-operation.html
Do not hesitate to add more information if needed.
I am looking to introduce Solr to power the search for a business listing website. The site has around 2 million records.
There is a search results page which will display some key data for each result. I believe the data needed for this summary information is around 1KB per result.
I could simply index the fields needed for the search within Solr - but this means a separate database call for each result to populate the summary information. If Solr could return all of this data I would expect it to yield greater performance than ~40 database round-trips.
The concern is that Solr's memory usage would be too large (how might I calculate this?) and that indexing might take too long with the extra data.
You would benefit greatly to store those fields in Solr compared to the 40 db roundtrips. Just make sure that you marked the field as "not indexed" (indexed = false) in your schema config and maybe also compressed (compressed = true) (however this will of course use some CPU when indexing and retrieving).
When marking a field as "not indexed" no analyzers will process the field when indexing making it stored much faster than a indexed field.
It's a trade off, and you will have to analyze this yourself.
Solr's performance greatly depends on caching, not only of queries, but also of the documents themselves. Those caches depend on memory, and the bigger your documents are, the less you can fit in a fixed amount of memory.
Document size also affects index size and replication times. For large indices with master slave configurations, this can impact the rate at which you can update the index.
Ideally you should measure cache hit rates at different cache sizes, with and without the fields. If you can spend the memory to get a high enough cache hit rate with the fields, then by all means go for it. If you cannot, you may have to fetch the document content from another system.
There is a third alternative you didn't mention, which is to store the documents outside of the DB, but not in Solr. They should be stored in a format which is as close as possible to what you deliver with search results. The code which creates/updates the indices could create/update these documents as well. This is a lot of work, but like everything it comes down to how much performance you need and what you are willing to do to get it.
EDIT: For measuring cache hit rates and throughput, I've found the best test source is your current query logs. Take a day or two worth of live queries and run them against different indexes and configurations to see how well they work.
Mysql behaves in a special (presumably more performant) manner when a table has no variable-width columns
Does postgres have similar behavior? Does adding a single variable-width column to a table make any major difference?
The general advice given in the postgres docs (read the tip) is that variable length fields often perform better because it results in less data so the table fits in less disk blocks and takes up less space in cache memory. Modern CPU's are so much faster then the memory and disks that the overhead of variable length field is worth the reduction in IO.
Notice that postgresql stores NULL values in a bitmap at the beginning of the row and omits the field if the value is NULL. So any nullable column has basically a variable width. The way postgresql stores it data (Database page layout) suggests that retrieving the last column would be slower then the first column. But this will probably only have a noticable impact if you have many columns and the data was mostly in cache to start with. Otherwise the disk io will be the dominant factor.
From what I know, no it doesn't
Check this link out for general talk about datatypes my conclusion from this read is whatever special behavior mysql exhibits, postgresql doesn't which to me is good. http://www.depesz.com/index.php/2010/03/02/charx-vs-varcharx-vs-varchar-vs-text/
presumably more performant
I would never ever believe any "performance myth" unless I test it with my own set of data and with a workload that is typical for my application.
If you need to know if your workload is fast enough on DBMS X with your data, don't look at anything else than the numbers you obtain from a realistic benchmark in your environment with hardware that matches production.
Any other approach can be replaced by staring at good crystal ball
I have a list of 1 million digits. Every time the user submit an input, I would need to do a matching of the input with the list.
As such, the list would have the Write Once Read Many (WORM) characteristics?
What would be the best way to implement storage for this data?
I am thinking of several options:
A SQL Database but is it suitable for WORM (UPDATE: using VARCHAR field type instead of INT)
One file with the list
A directory structure like /1/2/3/4/5/6/7/8/9/0 (but this one would be taking too much space)
A bucket system like /12345/67890/
What do you think?
UPDATE: The application would be a web application.
To answer this question you'll need to think about two things:
Are you trying to minimize storage space, or are you trying to minimize process time.
Storing the data in memory will give you the fastest processing time, especially if you could optimize the datastructure for your most common operations (in this case a lookup) at the cost of memory space. For persistence, you could store the data to a flat file, and read the data during startup.
SQL Databases are great for storing and reading relational data. For instance storing Names, addresses, and orders can be normalized and stored efficiently. Does a flat list of digits make sense to store in a relational database? For each access you will have a lot of overhead associated with looking up the data. Constructing the query, building the query plan, executing the query plan, etc. Since the data is a flat list, you wouldn't be able to create an effective index (your index would essentially be the values you are storing, which means you would do a table scan for each data access).
Using a directory structure might work, but then your application is no longer portable.
If I were writing the application, I would either load the data during startup from a file and store it in memory in a hash table (which offers constant lookups), or write a simple indexed file accessor class that stores the data in a search optimized order (worst case a flat file).
Maybe you are interested in how The Pi Searcher did it. They have 200 million digits to search through, and have published a description on how their indexed searches work.
If you're concerned about speed and don't want to care about file system storage, probably SQL is your best shot. You can optimize your table indexes but also will add another external dependency on your project.
EDIT: Seems MySQL have an ARCHIVE Storage Engine:
MySQL supports on-the-fly compression since version 5.0 with the ARCHIVE storage engine. Archive is a write-once, read-many storage engine, designed for historical data. It compresses data up to 90%. It does not support indexes. In version 5.1 Archive engine can be used with partitioning.
Two options I would consider:
Serialization - when the memory footprint of your lookup list is acceptable for your application, and the application is persistent (a daemon or server app), then create it and store it as a binary file, read the binary file on application startup. Upside - fast lookups. Downside - memory footprint, application initialization time.
SQL storage - when the lookup is amenable to index-based lookup, and you don't want to hold the entire list in memory. Upside - reduced init time, reduced memory footprint. Downside - requires DBMS (extra app dependency, design expertise), fast, but not as fast as holding the whole list in memeory
If you're concerned about tampering, buy a writable DVD (or a CD if you can find a store which still carries them ...), write the list on it and then put it into a server with only a DVD drive (not a DVD writer/burner). This way, the list can't be modified. Another option would be to buy an USB stick which has a "write protect" switch but they are hard to come by and the security isn't as good as with a CD/DVD.
Next, write each digit into a file on that disk with one entry per line. When you need to match the numbers, just open the file, read each line and stop when you find a match. With todays computer speeds and amounts of RAM (and therefore file system cache), this should be fast enough for a once-per-day access pattern.
Given that 1M numbers is not a huge amount of numbers for todays computers, why not just do pretty much the simplest thing that could work. Just store the numbers in a text file and read them into a hash set on application startup. On my computer reading in 1M numbers from a text file takes under a second and after that I can do about 13M lookups per second.