Algorithm for finding shortest cycles in directed graph - algorithm

A shortest cycle is one with the minimum number of edges.
For example, given a graph:
The shortest cycles are: ACDA, DABD
If I only needed to find one shortest cycle, I would just run BFS on every vertex and keep track of the smallest cycle. But I don't know how to enumerate all smallest cycles.
There is a similar SO question on enumerating minimal cycles in a digraph, but there a minimal cycle is one which is not a union of smaller cycles. Here I am only looking for the cycles with the minimum number of edges.

Run a number of DFS searches as in topological sort: start from a random vertex, and continue running new DFS searches as long as there are some unexplored vertices.
In a search, as soon as you find a back edge, you know that (1) there's a cycle (2) the number of edges in that cycle. If you also need to get a list of edges in the cycle, keep an array for each "currently detected cycle" and fill it as you backtrack in the DFS call graph. If the back-edge was a node A->B, When you'll reach back node B, the array is going to contain all edges in the cycle.
Of course, keep in track the "shortest cycle found so far" to avoid bookkeeping edge lists for cycles that are longer than this minimum.

Related

Calculate longest path for undirected graph where vertices can be visited several times but edges ONLY ONCE

I have an undirected graph and want to calculate the longest possible path between two vertices, where every edge can be visited ONLY ONCE but every vertex can be visited several times.
All the longest path solutions I found with JTGraph always operate on the premise that every vertex is only visited once.
Easier solution do not come to mind, but this can be done using min-cost-max-flow algorithm:
Build a flow network where edges have capacity of 1 and value of -1
Now running min cost max flow algorithm will find a flow of minimum cost from starting node to sink node - since our costs are negative this will find longest path that repeats vertices and uses edges only once

How to determine whether removing a given cycle will disconnect a graph

I have seen ways to detect a cycle in a graph, but I still have not managed to find a way to detect a "bridge-like" cycle. So let's say we have found a cycle in a connected (and undirected) graph. How can we determine whether removing this cycle will disconnect the graph or not? By removing the cycle, I mean removing the edges in the cycle (so the vertices are unaffected).
One way to do it is clearly to count the number of components before and after the removal. I'm just curious to know if there's a better way.
If there happens to be an established algorithm for that, could anyone please point me to a related work/paper/publication?
Here's the naive algorithm, complexity wise I don't think there's a more efficient way of doing the check.
Start with your list of edges (cycleEdges)
Get the set of vertices within cycleEdges (cycleVertices)
If a vertex in cycleVertices only contains edges that are part of cycleEdges return FALSE
For Each vetex In cycleVertices
Recursively follow vertex's edges that are not in cycleEdges (avoid already visited vertices)
If a vertex is reached that is not in cycleVertices add it to te set outsideVertices (stop recursively searching this path)
If only vertices that are in cycleVertices have been reached Return FALSE
If outsideVertices contains 1 element Return TRUE
Choose a vertex in outsideVertices and remove it from outsideVertices
Recursively follow that vertex's edges that are not in cycleEdges (avoid already visited vertices) (favor choosing edges that contain a vertex in outsideVertices to improve running time for large graphs)
If a vertex is reached that is in outsideVertices remove it from outsideVertices
If outsideVertices is empty Return TRUE
Return FALSE
You can do it for E+V.
You can get all bridges in your graph for E+V by dfs + dynamic programming.
http://www.geeksforgeeks.org/bridge-in-a-graph
Save them (just make boolean[E], and make true.
Then you can say for O(1) the edge is bridge or not.
You can just take all edges from your cycle and verify that it is bridge.
Vish's mentions articulation points which is definitely in the right direction. More can be said though. Articulation points can be found via a modified DFS algorithm that looks something like this:
Execute DFS, assigning each number with its DFS number (e.g. the number of nodes visited before it). When you encounter a vertex that has already been discovered compare its DFS number to the current vertex and you can store a LOW number associated with this vertex (e.g. the lowest DFS number that this node has "seen"). As you recurse back to the start vertex, you can compare the parent vertex with the child's LOW number. As you're recursing back, if a parent vertex ever sees a child's low number that is greater than or equal to its own DFS number, then that parent vertex is an articulation point.
I'm using "child" and "parent" here as descriptors a lot because in the DFS tree we have to consider a special case for the root. If it ever sees a child's low number that is greater than or equal to its own DFS number and it has two children in the tree, then the first vertex is an articulation.
Here's a useful art. point image
Another concept to be familiar with, especially for undirected graphs, is biconnected components, aka any subgraph whose vertices are in a cycle with all other vertices.
Here's a useful colored image with biconnected components
You can prove that any two biconnected components can only share one vertex max; two "shared" vertices would mean that the two are in a cycle, as well as with all the other vertices in the components so the two components are actually one large component. As you can see in the graph, any vertex shared by two components (has more than one color) is an articulation point. Removing the cycle that contains any articulation point will thus disconnect the graph.
Well, as in a cycle from any vertex x can be reached any other vertex y and vice-verse, then it's a strongly connected component, so we can contract a cycle into a single vertex that represents the cycle. The operation can be performed for O(n+m) using DFS. Now, we can apply DFS again in order to check whether the contracted cycles are articulation vertices, if they are, then removing them will disconnect a graph, else not. Total time is 2(n+m) = O(n+m)

Correctness of Bellman-Ford Algorithm, can we still do better?

I learned that the Bellman-Ford Algorithm has a running time of O(|E|*|V|), in which the E is the number of edges and V the number of vertices. Assume the graph does not have any negative weighted cycles.
My first question is that how do we prove that within (|V|-1) iterations (every iteration checks every edge in E), it updates the shortest path to every possible node, given a particular start node? Is it possible that we have iterated (|V|-1) times but still not ending up with shortest paths to every node?
Assume the correctness of the algorithm, can we actually do better than that? It occurs to me that not all edges are negatively weighted in a particular graph. The Bellman-Ford Algorithm seems expensive, as every iteration it goes through every edges.
The longest possible path from the source to any vertice would involve at most all the other vertices in the graph. In other words - you won't have a path that goes through the same vertice more than once, since that would necessarily increase the weights (this is true only thanks to the fact there are no negative cycles).
On each iteration you would update the shortest path weight on the next vertice in this path, until after |V|-1 iterations your updates would have to reach the end of that path. After that there won't be any vertices with non-tight values, since your update has covered all shortest paths up to that length.
This complexity is tight (at least for BF), think of a long line of connected vertices. Pick the leftmost as the source - your updating process would have to work its way from there to the other side once vertice at a time. Now you might argue that you don't have to check each edge that way, so let's throw in a few random edges with a very large weight (N > |V|*max-weight) - they can't help you, but your algorithm can't know that for sure, so if has to go through the process of updating the vertices with these weights (they're still better than the initial infinity).

How to detect if the given graph has a cycle containing all of its nodes? Does the suggested algorithm have any flaws?

I have a connected, non-directed, graph with N nodes and 2N-3 edges. You can consider the graph as it is built onto an existing initial graph, which has 3 nodes and 3 edges. Every node added onto the graph and has 2 connections with the existing nodes in the graph. When all nodes are added to the graph (N-3 nodes added in total), the final graph is constructed.
Originally I'm asked, what is the maximum number of nodes in this graph that can be visited exactly once (except for the initial node), i.e., what is the maximum number of nodes contained in the largest Hamiltonian path of the given graph? (Okay, saying largest Hamiltonian path is not a valid phrase, but considering the question's nature, I need to find a max. number of nodes that are visited once and the trip ends at the initial node. I thought it can be considered as a sub-graph which is Hamiltonian, and consists max. number of nodes, thus largest possible Hamiltonian path).
Since i'm not asked to find a path, I should check if a hamiltonian path exists for given number of nodes first. I know that planar graphs and cycle graphs (Cn) are hamiltonian graphs (I also know Ore's theorem for Hamiltonian graphs, but the graph I will be working on will not be a dense graph with a great probability, thus making Ore's theorem pretty much useless in my case). Therefore I need to find an algorithm for checking if the graph is cycle graph, i.e. does there exist a cycle which contains all the nodes of the given graph.
Since DFS is used for detecting cycles, I thought some minor manipulation to the DFS can help me detect what I am looking for, as in keeping track of explored nodes, and finally checking if the last node visited has a connection to the initial node. Unfortunately
I could not succeed with that approach.
Another approach I tried was excluding a node, and then try to reach to its adjacent node starting from its other adjacent node. That algorithm may not give correct results according to the chosen adjacent nodes.
I'm pretty much stuck here. Can you help me think of another algorithm to tell me if the graph is a cycle graph?
Edit
I realized by the help of the comment (thank you for it n.m.):
A cycle graph consists of a single cycle and has N edges and N vertices. If there exist a cycle which contains all the nodes of the given graph, that's a Hamiltonian cycle. – n.m.
that I am actually searching for a Hamiltonian path, which I did not intend to do so:)
On a second thought, I think checking the Hamiltonian property of the graph while building it will be more efficient, which is I'm also looking for: time efficiency.
After some thinking, I thought whatever the number of nodes will be, the graph seems to be Hamiltonian due to node addition criteria. The problem is I can't be sure and I can't prove it. Does adding nodes in that fashion, i.e. adding new nodes with 2 edges which connect the added node to the existing nodes, alter the Hamiltonian property of the graph? If it doesn't alter the Hamiltonian property, how so? If it does alter, again, how so? Thanks.
EDIT #2
I, again, realized that building the graph the way I described might alter the Hamiltonian property. Consider an input given as follows:
1 3
2 3
1 5
1 3
these input says that 4th node is connected to node 1 and node 3, 5th to node 2 and node 3 . . .
4th and 7th node are connected to the same nodes, thus lowering the maximum number of nodes that can be visited exactly once, by 1. If i detect these collisions (NOT including an input such as 3 3, which is an example that you suggested since the problem states that the newly added edges are connected to 2 other nodes) and lower the maximum number of nodes, starting from N, I believe I can get the right result.
See, I do not choose the connections, they are given to me and I have to find the max. number of nodes.
I think counting the same connections while building the graph and subtracting the number of same connections from N will give the right result? Can you confirm this or is there a flaw with this algorithm?
What we have in this problem is a connected, non-directed graph with N nodes and 2N-3 edges. Consider the graph given below,
A
/ \
B _ C
( )
D
The Graph does not have a Hamiltonian Cycle. But the Graph is constructed conforming to your rules of adding nodes. So searching for a Hamiltonian Cycle may not give you the solution. More over even if it is possible Hamiltonian Cycle detection is an NP-Complete problem with O(2N) complexity. So the approach may not be ideal.
What I suggest is to use a modified version of Floyd's Cycle Finding algorithm (Also called the Tortoise and Hare Algorithm).
The modified algorithm is,
1. Initialize a List CYC_LIST to ∅.
2. Add the root node to the list CYC_LIST and set it as unvisited.
3. Call the function Floyd() twice with the unvisited node in the list CYC_LIST for each of the two edges. Mark the node as visited.
4. Add all the previously unvisited vertices traversed by the Tortoise pointer to the list CYC_LIST.
5. Repeat steps 3 and 4 until no more unvisited nodes remains in the list.
6. If the list CYC_LIST contains N nodes, then the Graph contains a Cycle involving all the nodes.
The algorithm calls Floyd's Cycle Finding Algorithm a maximum of 2N times. Floyd's Cycle Finding algorithm takes a linear time ( O(N) ). So the complexity of the modied algorithm is O(N2) which is much better than the exponential time taken by the Hamiltonian Cycle based approach.
One possible problem with this approach is that it will detect closed paths along with cycles unless stricter checking criteria are implemented.
Reply to Edit #2
Consider the Graph given below,
A------------\
/ \ \
B _ C \
|\ /| \
| D | F
\ / /
\ / /
E------------/
According to your algorithm this graph does not have a cycle containing all the nodes.
But there is a cycle in this graph containing all the nodes.
A-B-D-C-E-F-A
So I think there is some flaw with your approach. But suppose if your algorithm is correct, it is far better than my approach. Since mine takes O(n2) time, where as yours takes just O(n).
To add some clarification to this thread: finding a Hamiltonian Cycle is NP-complete, which implies that finding a longest cycle is also NP-complete because if we can find a longest cycle in any graph, we can find the Hamiltonian cycle of the subgraph induced by the vertices that lie on that cycle. (See also for example this paper regarding the longest cycle problem)
We can't use Dirac's criterion here: Dirac only tells us minimum degree >= n/2 -> Hamiltonian Cycle, that is the implication in the opposite direction of what we would need. The other way around is definitely wrong: take a cycle over n vertices, every vertex in it has exactly degree 2, no matter the size of the circle, but it has (is) an HC. What you can tell from Dirac is that no Hamiltonian Cycle -> minimum degree < n/2, which is of no use here since we don't know whether our graph has an HC or not, so we can't use the implication (nevertheless every graph we construct according to what OP described will have a vertex of degree 2, namely the last vertex added to the graph, so for arbitrary n, we have minimum degree 2).
The problem is that you can construct both graphs of arbitrary size that have an HC and graphs of arbitrary size that do not have an HC. For the first part: if the original triangle is A,B,C and the vertices added are numbered 1 to k, then connect the 1st added vertex to A and C and the k+1-th vertex to A and the k-th vertex for all k >= 1. The cycle is A,B,C,1,2,...,k,A. For the second part, connect both vertices 1 and 2 to A and B; that graph does not have an HC.
What is also important to note is that the property of having an HC can change from one vertex to the other during construction. You can both create and destroy the HC property when you add a vertex, so you would have to check for it every time you add a vertex. A simple example: take the graph after the 1st vertex was added, and add a second vertex along with edges to the same two vertices of the triangle that the 1st vertex was connected to. This constructs from a graph with an HC a graph without an HC. The other way around: add now a 3rd vertex and connect it to 1 and 2; this builds from a graph without an HC a graph with an HC.
Storing the last known HC during construction doesn't really help you because it may change completely. You could have an HC after the 20th vertex was added, then not have one for k in [21,2000], and have one again for the 2001st vertex added. Most likely the HC you had on 23 vertices will not help you a lot.
If you want to figure out how to solve this problem efficiently, you'll have to find criteria that work for all your graphs that can be checked for efficiently. Otherwise, your problem doesn't appear to me to be simpler than the Hamiltonian Cycle problem is in the general case, so you might be able to adjust one of the algorithms used for that problem to your variant of it.
Below I have added three extra nodes (3,4,5) in the original graph and it does seem like I can keep adding new nodes indefinitely while keeping the property of Hamiltonian cycle. For the below graph the cycle would be 0-1-3-5-4-2-0
1---3---5
/ \ / \ /
0---2---4
As there were no extra restrictions about how you can add a new node with two edges, I think by construction you can have a graph that holds the property of hamiltonian cycle.

Detecting whether an edge is the heaviest edge in a cycle

So it seems that determining whether an edge is in a minimum spanning tree can be reduced down to the question of whether the edge is the heaviest edge of some cycle. I know how to detect whether an edge is in a cycle, using DFS, but how to determine whether it's the heaviest edge in that cycle? Is it by just finding the cycle and picking the heaviest edge in it?
Assuming that all the edges have distinct weights, a simple and fairly elegant algorithm for doing this would be to do a modified DFS. Notice that if this edge is the heaviest edge in some cycle, then if you were to look at the graph formed by deleting all edges heavier than the current edge, there must be some path from the endpoint of the edge back to the start of the edge, because this path, combined with the edge itself, forms a cycle with the given edge being the heaviest such edge. Conversely, if there is no cycle containing the edge for which the given edge is the heaviest, then if you were to do a search in this graph from the end of the edge back to the source, you wouldn't be able to get back to the source of the edge, since otherwise you could complete it into a cycle. This gives the following simple algorithm: do a DFS in the original graph from the endpoint of the edge back to the source, but whenever you encounter an edge that is heavier than the original edge, don't process it (this simulates deleting it from the graph). If your DFS takes you from the end of the edge back to the source, then you know that there must be some cycle for which the edge is the heaviest edge, and if there is no such cycle then you won't be able to get back to the source of the edge.
In the case where the edges aren't distinct, you would do the same search as above, but you would delete all edges whose weight was greater than or equal to the weight of the current edge. The reason for this is that if there is a path from the end of the edge to the start of the edge in this transformed graph, you know for a fact that we didn't end up using any edges that have the same cost as the original edge, so any path found can be completed into a cycle where the given edge is the heaviest. If there is no path, then either
Every cycle containing the given edge has some edge that's strictly heavier than it, or
Every cycle containing the given edge has some edge that has the same cost as it.
In either case, it's not the heaviest edge in the cycle.
The runtime of this algorithm is O(m + n), the time required to do a standard DFS.
Hope this helps!

Resources