sum of maximum element of sliding window of length K - algorithm

Recently I got stuck in a problem. The part of algorithm requires to compute sum of maximum element of sliding windows of length K. Where K ranges from 1<=K<=N (N length of an array).
Example if I have an array A as 5,3,12,4
Sliding window of length 1: 5 + 3 + 12 + 4 = 24
Sliding window of length 2: 5 + 12 + 12 = 29
Sliding window of length 3: 12 + 12 = 24
Sliding window of length 4: 12
Final answer is 24,29,24,12.
I have tried to this O(N^2). For each sliding window of length K, I can calculate the maximum in O(N). Since K is upto N. Therefore, overall complexity turns out to be O(N^2).
I am looking for O(N) or O(NlogN) or something similar to this algorithm as N maybe upto 10^5.
Note: Elements in array can be as large as 10^9 so output the final answer as modulo 10^9+7
EDIT: What I actually want to find answer for each and every value of K (i.e. from 0 to N) in overall linear time or in O(NlogN) not in O(KN) or O(KNlogN) where K={1,2,3,.... N}

Here's an abbreviated sketch of O(n).
For each element, determine how many contiguous elements to the left are no greater (call this a), and how many contiguous elements to the right are lesser (call this b). This can be done for all elements in time O(n) -- see MBo's answer.
A particular element is maximum in its window if the window contains the element and only elements among to a to its left and the b to its right. Usefully, the number of such windows of length k (and hence the total contribution of these windows) is piecewise linear in k, with at most five pieces. For example, if a = 5 and b = 3, there are
1 window of size 1
2 windows of size 2
3 windows of size 3
4 windows of size 4
4 windows of size 5
4 windows of size 6
3 windows of size 7
2 windows of size 8
1 window of size 9.
The data structure that we need to encode this contribution efficiently is a Fenwick tree whose values are not numbers but linear functions of k. For each linear piece of the piecewise linear contribution function, we add it to the cell at beginning of its interval and subtract it from the cell at the end (closed beginning, open end). At the end, we retrieve all of the prefix sums and evaluate them at their index k to get the final array.
(OK, have to run for now, but we don't actually need a Fenwick tree for step two, which drops the complexity to O(n) for that, and there may be a way to do step one in linear time as well.)
Python 3, lightly tested:
def left_extents(lst):
result = []
stack = [-1]
for i in range(len(lst)):
while stack[-1] >= 0 and lst[i] >= lst[stack[-1]]:
del stack[-1]
result.append(stack[-1] + 1)
stack.append(i)
return result
def right_extents(lst):
result = []
stack = [len(lst)]
for i in range(len(lst) - 1, -1, -1):
while stack[-1] < len(lst) and lst[i] > lst[stack[-1]]:
del stack[-1]
result.append(stack[-1])
stack.append(i)
result.reverse()
return result
def sliding_window_totals(lst):
delta_constant = [0] * (len(lst) + 2)
delta_linear = [0] * (len(lst) + 2)
for l, i, r in zip(left_extents(lst), range(len(lst)), right_extents(lst)):
a = i - l
b = r - (i + 1)
if a > b:
a, b = b, a
delta_linear[1] += lst[i]
delta_linear[a + 1] -= lst[i]
delta_constant[a + 1] += lst[i] * (a + 1)
delta_constant[b + 2] += lst[i] * (b + 1)
delta_linear[b + 2] -= lst[i]
delta_linear[a + b + 2] += lst[i]
delta_constant[a + b + 2] -= lst[i] * (a + 1)
delta_constant[a + b + 2] -= lst[i] * (b + 1)
result = []
constant = 0
linear = 0
for j in range(1, len(lst) + 1):
constant += delta_constant[j]
linear += delta_linear[j]
result.append(constant + linear * j)
return result
print(sliding_window_totals([5, 3, 12, 4]))

Let's determine for every element an interval, where this element is dominating (maximum). We can do this in linear time with forward and backward runs using stack. Arrays L and R will contain indexes out of the domination interval.
To get right and left indexes:
Stack.Push(0) //(1st element index)
for i = 1 to Len - 1 do
while Stack.Peek < X[i] do
j = Stack.Pop
R[j] = i //j-th position is dominated by i-th one from the right
Stack.Push(i)
while not Stack.Empty
R[Stack.Pop] = Len //the rest of elements are not dominated from the right
//now right to left
Stack.Push(Len - 1) //(last element index)
for i = Len - 2 to 0 do
while Stack.Peek < X[i] do
j = Stack.Pop
L[j] = i //j-th position is dominated by i-th one from the left
Stack.Push(i)
while not Stack.Empty
L[Stack.Pop] = -1 //the rest of elements are not dominated from the left
Result for (5,7,3,9,4) array.
For example, 7 dominates at 0..2 interval, 9 at 0..4
i 0 1 2 3 4
X 5 7 3 9 4
R 1 3 3 5 5
L -1 -1 1 -1 4
Now for every element we can count it's impact in every possible sum.
Element 5 dominates at (0,0) interval, it is summed only in k=1 sum entry
Element 7 dominates at (0,2) interval, it is summed once in k=1 sum entry, twice in k=2 entry, once in k=3 entry.
Element 3 dominates at (2,2) interval, it is summed only in k=1 sum entry
Element 9 dominates at (0,4) interval, it is summed once in k=1 sum entry, twice in k=2, twice in k=3, twice in k=4, once in k=5.
Element 4 dominates at (4,4) interval, it is summed only in k=1 sum entry.
In general element with long domination interval in the center of long array may give up to k*Value impact in k-length sum (it depends on position relative to array ends and to another dom. elements)
k 1 2 3 4 5
--------------------------
5
7 2*7 7
3
9 2*9 2*9 2*9 9
4
--------------------------
S(k) 28 32 25 18 9
Note that the sum of coefficients is N*(N-1)/2 (equal to the number of possible windows), the most of table entries are empty, so complexity seems better than O(N^2)
(I still doubt about exact complexity)

The sum of maximum in sliding windows for a given window size can be computed in linear time using a double ended queue that keeps elements from the current window. We maintain the deque such that the first (index 0, left most) element in the queue is always the maximum of the current window.
This is done by iterating over the array and in each iteration, first we remove the first element in the deque if it is no longer in the current window (we do that by checking its original position, which is also saved in the deque together with its value). Then, we remove any elements from the end of the deque that are smaller than the current element, and finally we add the current element to the end of the deque.
The complexity is O(N) for computing the maximum for all sliding windows of size K. If you want to do that for all values of K from 1..N, then time complexity will be O(N^2). O(N) is the best possible time to compute the sum of maximum values of all windows of size K (that is easy to see). To compute the sum for other values of K, the simple approach is to repeat the computation for each different value of K, which would lead to overall time of O(N^2). Is there a better way ? No, because even if we save the result from a computation for one value of K, we would not be able to use it to compute the result for a different value of K, in less then O(N) time. So best time is O(N^2).
The following is an implementation in python:
from collections import deque
def slide_win(l, k):
dq=deque()
for i in range(len(l)):
if len(dq)>0 and dq[0][1]<=i-k:
dq.popleft()
while len(dq)>0 and l[i]>=dq[-1][0]:
dq.pop()
dq.append((l[i],i))
if i>=k-1:
yield dq[0][0]
def main():
l=[5,3,12,4]
print("l="+str(l))
for k in range(1, len(l)+1):
s=0
for x in slide_win(l,k):
s+=x
print("k="+str(k)+" Sum="+str(s))

Related

What is the minimum cost of arranging the range a (n) (a [i] <= 20) such that the equal values will form a continuous segment?

You provide 1 string: a1, a2..an (a [i] <= 20)
Requirement: The minimum cost (number of steps) to swap any two elements in the sequence so that the final sequence obtained has equal values ​​that lie in succession:
Each step you can only choose 2 adjacent values to swap: swap (a [i], a [i + 1]) = 1steps
example:
1 1 3 1 3 2 3 2
Swap (a [3], a [4])
Swap (a [6], a [7])
-> 1 1 1 3 3 3 2 2
minimum = 2
I need your help.
Note that since A[i] <= 20 we can go ahead and enumerate every subset of all A[i] and fit comfortably within any time constraints.
Let M be the number of unique A[i], then there is a O(NM + M * 2^M) dynamic programming solution with bitmasks.
note that when I say moving an A[i] I mean moving every element with value A[i]
To understand how we do this let's first consider the brute force solution. We have some set of unique A[i] moved to the front of the string, and then at each step we pick the next A[i] to move behind what we had originally. This is O(M! * N).
There's one important observation to be made here: if we have some set of A[i] at the start of the string, and then we move the next one, the order of our original set of A[i] doesn't actually matter. Any move will cost the same regardless of the order.
Let cost(subset, A[i]) be the cost of moving all A[i] behind that subset of A[i] at the front of the string. Then we can write the following:
dp = [float('inf')] * (1 << M) # every subset of A[i]
dp[0] = 0
for mask in range(len(dp)):
for bit in range(M):
# if this A[i] hasn't been moved to the front, we move it to the front
if (mask >> bit) & 1 == 0:
dp[mask^(1 << bit)] = min(dp[mask^(1 << bit)], dp[mask] + cost(mask, bit))
If we compute cost naively then we have O(M * 2^M * N). However we can precompute every value of cost with O(1) per value.
Here's how we can do this:
Idea: The number of swaps needed to sort an array is the number of inversions.
Let's define a new array inversions[M][M], where inversions[i][j] is the number of times j comes after i in the arr. For clarity here's how we would compute it naively:
for i in range(len(arr)):
for j in range(i + 1, len(arr)):
if arr[i] != arr[j]: inversions[arr[i]][arr[j]] += 1
Assume that we have inversions, then we can compute cost(subset, A[i]) like so:
cost = 0
for bit in range(M):
# if bit isn't in the mask and thus needs to get swapped with A[i]
if (subset >> bit) & 1 == 0:
cost += inversions[bit][A[i]]
What's left is the following:
Compute inversions in O(NM). This can be done with keeping a count of each M at each index in N.
Currently cost is O(M) and not O(1). We can run a separate dynamic programming on cost to build an array cost[(1 << M)][M], where cost[i][j] is the cost to move item j to subset i.
For sake of completeness here is a complete code written in C++. It's my submission for the same problem on codeforces. Note that in that code cost is named contribution.

Algorithm-Find sum in matrix

We are given 2D matrix array (let's say length i and wide j) and integer k
We have to find size of smallest rectangle, that contains this or greater sum
F.e k=7
4 1
1 1
1 1
4 4
Anwser is 2, because 4+4=8 >= 7, if there wasn't last line, anwser would be 4, 4+1+1+1 = 7 >= 7
My idea is to count prefix sums Pref[k,l]=Tab[k,l]+Pref[k-1,l]+Pref[k,l-1]
And then compare every single rectangle
Is this possible to make it faster? My idea is T(n)=O(n^2) (Where n is number of elements in matrix)
I would like to do this in time n or n * log n
I would be really glad if someone would give me any tip how to do this :)
First, create an auxillary matrix: sums, where:
sums[i,j] = A[0,0] + A[0,1] + .... + A[0,j] + A[1,0] + ... + A[1,j] + ... + A[i,j]
I think this is what you meant when you said "prefix matrix".
This can be calculated in linear time with dynamic programming:
sums[0,j] = A[0,0] + ... + A[0,j]
sums[i,0] = A[0,0] + ... + A[i,0]
sums[i,j] = sums[i-1,j] + sums[i,j-1] - sums[i-1,j-1] + A[i,j]
^
elements counted twice
Now, assuming all elements are non negative, this is non decreasing, matrix, where each column and each row are sorted.
So, iterating the matrix again, for each pair of indices i,j, find the value closest yet smaller than sum[i,j]-k.
This can be done in O(sqrt(n)).
Do it for each such (i,j) pair, and you get O(n*sqrt(n)) solution.

Maximise the minimum difference [duplicate]

This question already has answers here:
Take K elements and maximise the minimum distance
(2 answers)
Closed 7 years ago.
We are given N elements in form of array A , Now we have to choose K indexes from N given indexes such that for any 2 indexes i and j minimum value of |A[i]-A[j]| is as large as possible. We need to tell this maximum value.
Lets take an example : Let N=5 and K=2 and array be [1,5,3,7,11] then here answer is 10 as we can simply choose first and last position and differ = 11-1=10.
Example 2 : Let N=10 and K=3 and array A be [3 9 6 11 15 20 23] then here answer will be 8. As we can select [3,11,23] or [3,15,23].
Now given N , K and Array A we need to find this maximum difference.
We are given that 1 ≤ N ≤ 10^5 and 1 ≤ S ≤ 10^7
Let's sort the array.
Now we can do a binary search over the answer.
For a fixed candidate x, we can just pick the elements greedily(iterating over the sorted array and taking each element if we can). If the number of elements we have picked is not less than K, x is feasible. Otherwise, it is not.
The time complexity is O(N * log N + N * log (MAX_ELEMENT - MIN_ELEMENT))
A pseudo code:
bool isFeasible(int x):
cnt = 1
last = a[0]
for i <- 1 ... n - 1:
if a[i] - last >= x:
last = a[i]
cnt++
return cnt >= k
sort(a)
low = 0
high = a[n - 1] - a[0] + 1
while high - low > 1:
mid = low + (high - low) / 2
if isFeasible(mid):
low = mid
else
high = mid
print(low)
I think this can be dealt with as a dynamic programming problem. Start off by sorting A, and then the problem is to mark K elements in A such that the minimum difference between adjacent marked items is as large as possible. As a starter, you can always mark the first and last elements.
Moving from left to right, at each position for i=1..N work out the largest minimum difference you can get by marking i elements in the sub-array terminating at this position. You can work out the largest minimum difference for k items terminating at this position by considering the largest minimum difference for k-1 items terminating at each position to the left of the position you are working on. The obvious thing to do is to consider each possible position up to the position you are currently working on as ending a stretch of k-1 items with minimum difference, but you may be able to do a binary search here to speed things up.
Once you have worked all the way to the right hand end you know the maximum possible value for the original problem. If you need to know where to put the K elements, you can take notes as you go along so that you can backtrack to find out the elements chosen that lead to this solution, working from right to left.

Finding largest minimum distance among k objects in n possible distinct positions?

What is an efficient way to find largest minimum distance among k objects in n possible distinct positions?
For eg:
N: Number of distinct positions
Lets say N = 5
and the 5 positions are {1,2,4,8,9}
K: Number of objects let say k = 3
So the possible answer (Largest Minimum Distance) would be: 3 if we put objects at {1,4,8} or {1,4,9}
Let's do a binary search over the answer.
For a fixed answer x, we can check whether it is feasible or not using a simple linear greedy algorithm(pick the first element and then iterate over the rest of the array adding the current element if the distance between it and the last picked element is greater than or equal to x). In the end, we just need to check that the number of picked elements is at least k.
The time complexity is O(n * log MAX_A), where MAX_A is the maximum element of the array.
Here is a pseudo code for this algorithm:
def isFeasible(positions, dist, k):
taken = 1
last = positions[0]
for i = 1 ... positions.size() - 1:
if positions[i] - last >= dist:
taken++
last = positions[i]
return taken >= k
def solve(positions, k):
low = 0 // definitely small enough
high = maxElement(positions) - minElement(positions) + 1 // definitely too big
while high - low > 1:
mid = (low + high) / 2
if isFeasible(positions, mid, k):
low = mid
else:
high = mid
return low

nth smallest element in a union of an array of intervals with repetition

I want to know if there is a more efficient solution than what I came up with(not coded it yet but described the gist of it at the bottom).
Write a function calcNthSmallest(n, intervals) which takes as input a non-negative int n, and a list of intervals [[a_1; b_1]; : : : ; [a_m; b_m]] and calculates the nth smallest number (0-indexed) when taking the union of all the intervals with repetition. For example, if the intervals were [1; 5]; [2; 4]; [7; 9], their union with repetition would be [1; 2; 2; 3; 3; 4; 4; 5; 7; 8; 9] (note 2; 3; 4 each appear twice since they're in both the intervals [1; 5] and [2; 4]). For this list of intervals, the 0th smallest number would be 1, and the 3rd and 4th smallest would both be 3. Your implementation should run quickly even when the a_i; b_i can be very large (like, one trillion), and there are several intervals
The way I thought to go about it is the straightforward solution which is to make the union array and traverse it.
This problem can be solved in O(N log N) where N is the number of intervals in the list, regardless of the actual values of the interval endpoints.
The key to solving this problem efficiently is to transform the list of possibly-overlapping intervals into a list of intervals which are either disjoint or identical. In the given example, only the first interval needs to be split:
{ [1,5], [2,4], [7,9]} =>
+-----------------+ +---+ +---+
{[1,1], [2,4], [5,5], [2,4], [7,9]}
(This doesn't have to be done explicitly, though: see below.) Now, we can sort the new intervals, replacing duplicates with a count. From that, we can compute the number of values each (possibly-duplicated) interval represents. Now, we simply need to accumulate the values to figure out which interval the solution lies in:
interval count size values cumulative
in interval values
[1,1] 1 1 1 [0, 1)
[2,4] 2 3 6 [1, 7) (eg. from n=1 to n=6 will be here)
[5,5] 1 1 1 [7, 8)
[7,9] 1 3 3 [8, 11)
I wrote the cumulative values as a list of half-open intervals, but obviously we only need the end-points. We can then find which interval holds value n by, for example, binary-searching the cumulative values list, and we can figure out which value in the interval we want by subtracting the start of the interval from n and then integer-dividing by the count.
It should be clear that the maximum size of the above table is twice the number of original intervals, because every row must start and end at either the start or end of some interval in the original list. If we'd written the intervals as half-open instead of closed, this would be even clearer; in that case, we can assert that the precise size of the table will be the number of unique values in the collection of end-points. And from that insight, we can see that we don't really need the table at all; we just need the sorted list of end-points (although we need to know which endpoint each value represents). We can simply iterate through that list, maintaining the count of the number of active intervals, until we reach the value we're looking for.
Here's a quick python implementation. It could be improved.
def combineIntervals(intervals):
# endpoints will map each endpoint to a count
endpoints = {}
# These two lists represent the start and (1+end) of each interval
# Each start adds 1 to the count, and each limit subtracts 1
for start in (i[0] for i in intervals):
endpoints[start] = endpoints.setdefault(start, 0) + 1
for limit in (i[1]+1 for i in intervals):
endpoints[limit] = endpoints.setdefault(limit, 0) - 1
# Filtering is a possibly premature optimization but it was easy
return sorted(filter(lambda kv: kv[1] != 0,
endpoints.iteritems()))
def nthSmallestInIntervalList(n, intervals):
limits = combineIntervals(intervals)
cumulative = 0
count = 0
index = 0
here = limits[0][0]
while index < len(limits):
size = limits[index][0] - here
if n < cumulative + count * size:
# [here, next) contains the value we're searching for
return here + (n - cumulative) / count
# advance
cumulative += count * size
count += limits[index][1]
here += size
index += 1
# We didn't find it. We could throw an error
So, as I said, the running time of this algorithm is independent of the actual values of the intervals; it only depends in the length of the interval list. This particular solution is O(N log N) because of the cost of the sort (in combineIntervals); if we used a priority queue instead of a full sort, we could construct the heap in O(N) but making the scan O(log N) for each scanned endpoint. Unless N is really big and the expected value of the argument n is relatively small, this would be counter-productive. There might be other ways to reduce complexity, though.
Edit2:
Here's yet another take on your question.
Let's consider the intervals graphically:
1 1 1 2 2 2 3
0-2-4--7--0--3---7-0--4--7--0
[-------]
[-----------------]
[---------]
[--------------]
[-----]
When sorted in increasing order on the lower bound, we could get something that looks like the above for the interval list ([2;10];[4;24];[7;17];[13;30];[20;27]). Each lower bound indicates the start of a new interval, and would also marks the beginning of one more "level" of duplication of the numbers. Conversely, upper bounds mark the end of that level, and decrease the duplication level of one.
We could therefore convert the above into the following list:
[2;+];[4;+];[7;+][10;-];[13;+];[17;-][20;+];[24;-];[27;-];[30;-]
Where the first value indicates the rank of the bound, and the second value whether the bound is lower (+) or upper (-). The computation of the nth element is done by following the list, raising or lowering the duplication level when encountering an lower or upper bound, and using the duplication level as a counting factor.
Let's consider again the list graphically, but as an histogram:
3333 44444 5555
2222222333333344444555
111111111222222222222444444
1 1 1 2 2 2 3
0-2-4--7--0--3---7-0--4--7--0
The view above is the same as the first one, with all the intervals packed vertically.
1 being the elements of the 1st one, 2 the second one, etc. In fact, what matters here
is the height at each index, corresponding of the number of time each index is duplicated in the union of all intervals.
3333 55555 7777
2223333445555567777888
112223333445555567777888999
1 1 1 2 2 2 3
0-2-4--7--0--3---7-0--4--7--0
| | | | | | || | |
We can see that histogram blocks start at lower bounds of intervals, and end either on upper bounds, or one unit before lower bounds, so the new notation must be modified accordingly.
With a list containing n intervals, as a first step, we convert the list into the notation above (O(n)), and sort it in increasing bound order (O(nlog(n))). The second step of computing the number is then in O(n), for a total average time in O(nlog(n)).
Here's a simple implementation in OCaml, using 1 and -1 instead of '+' and '-'.
(* transform the list in the correct notation *)
let rec convert = function
[] -> []
| (l,u)::xs -> (l,1)::(u+1,-1)::convert xs;;
(* the counting function *)
let rec count r f = function
[] -> raise Not_found
| [a,x] -> (match f + x with
0 -> if r = 0 then a else raise Not_found
| _ -> a + (r / f))
| (a,x)::(b,y)::l ->
if a = b
then count r f ((b,x+y)::l)
else
let f = f + x in
if f > 0 then
let range = (b - a) * f in
if range > r
then a + (r / f)
else count (r - range) f ((b,y)::l)
else count r f ((b,y)::l);;
(* the compute function *)
let compute l =
let compare (x,_) (y,_) = compare x y in
let l = List.sort compare (convert l) in
fun m -> count m 0 l;;
Notes:
- the function above will raise an exception if the sought number is above the intervals. This corner case isn't taken in account by the other methods below.
- the list sorting function used in OCaml is merge sort, which effectively performs in O(nlog(n)).
Edit:
Seeing that you might have very large intervals, the solution I gave initially (see down below) is far from optimal.
Instead, we could make things much faster by transforming the list:
we try to compress the interval list by searching for overlapping ones and replace them by prefixing intervals, several times the overlapping one, and suffixing intervals. We can then directly compute the number of entries covered by each element of the list.
Looking at the splitting above (prefix, infix, suffix), we see that the optimal structure to do the processing is a binary tree. A node of that tree may optionally have a prefix and a suffix. So the node must contain :
an interval i in the node
an integer giving the number of repetition of i in the list,
a left subtree of all the intervals below i
a right subtree of all the intervals above i
with this structure in place, the tree is automatically sorted.
Here's an example of an ocaml type embodying that tree.
type tree = Empty | Node of int * interval * tree * tree
Now the transformation algorithm boils down to building the tree.
This function create a tree out of its component:
let cons k r lt rt =
the tree made of count k, interval r, left tree lt and right tree rt
This function recursively insert an interval in a tree.
let rec insert i it =
let r = root of it
let lt = the left subtree of it
let rt = the right subtree of it
let k = the count of r
let prf, inf, suf = the prefix, infix and suffix of i according to r
return cons (k+1) inf (insert prf lt) (insert suf rt)
Once the tree is built, we do a pre-order traversal of the tree, using the count of the node to accelerate the computation of the nth element.
Below is my previous answer.
Here are the steps of my solution:
you need to sort the interval list in increasing order on the lower bound of each interval
you need a deque dq (or a list which will be reversed at some point) to store the intervals
here's the code:
let lower i = lower bound of interval i
let upper i = upper bound of i
let il = sort of interval list
i <- 0
j <- lower (head of il)
loop on il:
i <- i + 1
let h = the head of il
let il = the tail of il
if upper h > j then push h to dq
if lower h > j then
il <- concat dq and il
j <- j + 1
dq <- empty
loop
if i = k then return j
loop
This algorithm works by simply iterating through the intervals, only taking in account the relevant intervals, and counting both the rank i of the element in the union, and the value j of that element. When the targeted rank k has been reached, the value is returned.
The complexity is roughly in O(k) + O(sort(l)).
if i have understood your question correctly, you want to find the kth largest element in union of list of intervals.
If we assume that no of list = 2 the question is :
Find the kth smallest element in union of two sorted arrays (where an interval [2,5] is nothing but elements from 2 to 5 {2,3,4,5}) this sollution can be solved in (n+m)log(n+m) time where (n and m are sizes of list) . where i and j are list iterators .
Maintaining the invariant
i + j = k – 1,
If Bj-1 < Ai < Bj, then Ai must be the k-th smallest,
or else if Ai-1 < Bj < Ai, then Bj must be the k-th smallest.
For details click here
Now the problem is if you have no of lists=3 lists then
Maintaining the invariant
i + j+ x = k – 1,
i + j=k-x-1
The value k-x-1 can take y (size of third list, because x iterates from start point of list to end point) .
problem of 3 lists size can be reduced to y*(problem of size 2 list). So complexity is `y*((n+m)log(n+m))`
If Bj-1 < Ai < Bj, then Ai must be the k-th smallest,
or else if Ai-1 < Bj < Ai, then Bj must be the k-th smallest.
So for problem of size n list the complexity is NP .
But yes we can do minor improvement if we know that k< sizeof(some lists) we can chop the elements starting from k+1th element to end(from our search space ) in those list whose size is bigger than k (i think it doesnt help for large k).If there is any mistake please let me know.
Let me explain with an example:
Assume we are given these intervals [5,12],[3,9],[8,13].
The union of these intervals is:
number : 3 4 5 5 6 6 7 7 8 8 8 9 9 9 10 10 11 11 12 12 13.
indices: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
The lowest will return 11 when 9 is passed an input.
The highest will return 14 when 9 is passed an input.
Lowest and highest function just check whether the x is present in that interval, if it is present then adds x-a(lower index of interval) to return value for that one particular interval. If an interval is completely smaller than x, then adds total number of elements in that interval to the return value.
The find function will return 9 when 13 is passed.
The find function will use the concept of binary search to find the kth smallest element. In the given range [0,N] (if range is not given we can find high range in O(n)) find the mid and calculate the lowest and highest for mid. If given k falls in between lowest and highest return mid else if k is less than or equal to lowest search in the lower half(0,mid-1) else search in the upper half(mid+1,high).
If the number of intervals are n and the range is N, then the running time of this algorithm is n*log(N). we will find lowest and highest (which runs in O(n)) log(N) times.
//Function call will be `find(0,N,k,in)`
//Retrieves the no.of smaller elements than first x(excluding) in union
public static int lowest(List<List<Integer>> in, int x){
int sum = 0;
for(List<Integer> lst: in){
if(x > lst.get(1))
sum += lst.get(1) - lst.get(0)+1;
else if((x >= lst.get(0) && x<lst.get(1)) || (x > lst.get(0) && x<=lst.get(1))){
sum += x - lst.get(0);
}
}
return sum;
}
//Retrieve the no.of smaller elements than last x(including) in union.
public static int highest(List<List<Integer>> in, int x){
int sum = 0;
for(List<Integer> lst: in){
if(x > lst.get(1))
sum += lst.get(1) - lst.get(0)+1;
else if((x >= lst.get(0) && x<lst.get(1)) || (x > lst.get(0) && x<=lst.get(1))){
sum += x - lst.get(0)+1;
}
}
return sum;
}
//Do binary search on the range.
public static int find(int low, int high, int k,List<List<Integer>> in){
if(low > high)
return -1;
int mid = low + (high-low)/2;
int lowIdx = lowest(in,mid);
int highIdx = highest(in,mid);
//k lies between the current numbers high and low indices
if(k > lowIdx && k <= highIdx) return mid;
//k less than lower index. go on to left side
if(k <= lowIdx) return find(low,mid-1,k,in);
// k greater than higher index go to right
if(k > highIdx) return find(mid+1,high,k,in);
else
return -1; // catch statement
}
It's possible to count how many numbers in the list are less than some chosen number X (by iterating through all of the intervals). Now, if this number is greater than n, the solution is certainly smaller than X. Similarly, if this number is less than or equal to n, the solution is greater than or equal to X. Based on these observation we can use binary search.
Below is a Java implementation :
public int nthElement( int[] lowerBound, int[] upperBound, int n )
{
int lo = Integer.MIN_VALUE, hi = Integer.MAX_VALUE;
while ( lo < hi ) {
int X = (int)( ((long)lo+hi+1)/2 );
long count = 0;
for ( int i=0; i<lowerBound.length; ++i ) {
if ( X >= lowerBound[i] && X <= upperBound[i] ) {
// part of interval i is less than X
count += (long)X - lowerBound[i];
}
if ( X >= lowerBound[i] && X > upperBound[i] ) {
// all numbers in interval i are less than X
count += (long)upperBound[i] - lowerBound[i] + 1;
}
}
if ( count <= n ) lo = X;
else hi = X-1;
}
return lo;
}

Resources