I have a series of continuous frames which record drawing by pens with real hands.
(Those frames)
What I want to do is reconstruction the drawing strokes.
I want to remove the hand area.
I have thought about its property.
1.The drawing are thin lines.
2.The drawing are continuous.
3.The drawing won't change only if obscured by hands.
So, now I have came up with little idea.
Because I have all the frames already.
For the current frame's black pixel, I will check if afterward frames mostly the pixel is black or not(because sometimes obscured by hands), then I recognize it as drawing strokes.
But the effect isn't good.
I have checked some line detection, edge detection, contour detection but not what I want.
Could you give me some advice or direction?
1.How to extract thin line?
2.How to remove hand area?
Look into the Stroke Width Transform (Stroke Width Transform (SWT) implementation (Java, C#...)). The concept is relatively simple, and the original algorithm has since spun off several variants.
Since you have multiple frames, you could also simply retain any pixels that are present in every frame (starting with the first frame in which a pixel is turned "on"). This might be simpler to implement than the Stroke Width Transform (or related algorithm), but in the long run may not be as robust as you'd like.
The Stroke Width Transform has the advantage of working in natural, complex scenes.
Related
Is it a reasonable optimization to omit calls to ID2D1HwndRenderTarget::DrawBitmap() if the image will end up outside the visible area? If I implement the checking logic in the application that will cost some performance, so if the first thing D2D does is doing the same check then I'd rather not do it.
I had a test with my application which renders some UI part using Direct2D (and attaching renderdoc), seems it is a bit random.
I render a mix of Rectangles, Text, Path geometries (beziers) and Rectangle with a bitmap brush (which should be equivalent to your DrawBitmap call).
Then I capture a frame with all those objects visible, and another one panning my UI (using transform) so objects are not visible.
From there could check what is drawn or not:
Text is always culled
Solid color rectangles are not culled
Most of the times path geometries are culled, but sometimes not.
Rectangle with bitmap brush are NEVER culled
So it seems Direct2D is making different decisions depending on the types of elements you plan to draw.
Since rectangles are easily batched and cheap to draw, it seems that they are just drawn regardless.
Bitmap rectangles and text require more work, so it seems they are effectively culled.
Path geometry was looking to depend on how many polygon the geometry is tesselated to (I had a path that was translating to 26 primitives and it was not culled, another one translating to 120 and it got culled).
So you can either trust Direct2D that it will perform that optimization, but I would personally implement a quick rectangle to rectangle check just in case (it's not gonna hurt your performances as its an extremely simple operation).
I have a system that removes the colour white (give or take a few shades), from an image and replaces it with an alpha channel. (The image is taken from the users phone camera, and tries to remove selected colouring)
This leaves harsh edges most of the time, and I want to know if it is possible to add some type of anti-aliasing on top.
The system works by taking in the image, and searching through each pixel data. If the pixel is white (or close), it will replace it with an alpha colour.
So I guess my question is, how do I make the edges less harsh. Thanks.
Anti aliasing is not what you are looking for. This takes care of effects caused by the limited resolution of your image. However, your problem is not related to resolution, you would still have it with infinite resolution.
What you need to do is when you find a white pixel, increase the transparency of the pixel itself and the pixels around it.
You can just include the four pixels immediately above, below, left or right of your white pixel, or you an choose any other shape, e.g. all pixels which lie inside a circle of given radius around the white pixel.
Also you can choose a function which determines how transparency is distributed over that shape. You can make everything half-transparent or you can decrease the effect towards the edges of that shape (though I don't think that this will be necessary).
Thus each pixel will receive transparency from several pixels around them. The resulting transparency must be computed from all these contributions. Simply multiplying them probably won't do, because you will have a hard time ever reaching alpha=0. You may however, interpret (255-alpha) as a measure of transparency, add all contributing transparencies and then convert back into alpha. Something like max (0, 255 - (255-a1) + (255-a2) ...).
It will be difficult to do this in-place, i.e. with just ony copy of the image. You might need an intermediate "image", where each pixel is associated with all transparency contributions from the pixels around it.
I'm writing a drawing program that uses a pressure sensitive table for input. I'd like to be able to simulate the soft pencil effect that many other art programs have (such as Paint Tool SAI, Art Rage). Technique I'm using at the moment is functional, but is missing the cleanness I see in more professional programs.
My algorithm at the moment works like this:
Create a bitmap representing the head of the brush. This is just a transparent bitmap with a black circle drawn on it. The circle has an inner radius that is solid black and an outer radius. The blackness linearly fades from opaque to transparent as you move from the inner to the outer radius.
Capture input events from my tablet. Each point contains an (x, y) coordinate as well as a pressure value
For every point after the first one, draw a line from the previous point to the current one. This is done by drawing (daubing) the brush bitmap several times between the two points. The step size between each daub is chosen so there is an overlap between subsequent daubs.
This works reasonably well, but the result is a line that is somewhat blobby and jagged.
One thing I need to do is somehow smooth out the input points so that the stroke as a whole is smooth.
The other thing I need to do is figure out how to 'drag' the brush head along this path to make the stroke. If the spacing is too far apart, the stroke looks like a line of circles. If too close together, the stroke builds up on itself and becomes very dark. (I tried to fix this by attenuating the brush by the spacing. This does make things more consistent, but stops the stroke from being fully opaque).
Anyhow, I'd expect that there's a lot of research already done on this, if only I knew where to look. Please let me know if there are any better pencil drawing algorithms out there.
Instead of drawing the new circle over what has already been drawn, using the standard blending functions (so that regions of overlap get a higher opacity), you need to keep the maximum opacity so far.
Only after you have built up the complete stroke (as on a white sheet), you can blend it to the existing line art.
The picture illustrates the difference between blending and keeping the maximum opacity.
I'm working on a simple drawing application. My line is constructed using polygons and things look good so far. I would like to add a transparency feature and I used glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); for that reason. However, because my polys sometimes overlap, I get the ugly result shown in the picture (multiple layers of transparency). What I would like to get is the figure in the left(no overlapping because there is no transparency), with an overall transparency.
I guess I could do this by keeping the polys from overlaping, but that would be a overkill for this task I think. There should be a way to control them at drawing time, but being a beginner with OpenGL doesn't help.
I'm sorry, but the way transparency works does not allow you to do what you want without manually keeping the polygons from overlapping. The way that transparency works is that it takes the colour of the surface below it, and uses the blending function you specify in order to calculate the final colour of the pixel.
In your program you are drawing multiple polygons with alpha on top of each other. That means that their colours add up, giving the result you see.
I've never actually written a drawing application, but you could perhaps take a look at triangle strips to draw your lines. They allow you to extend the line point by point, and make sure the geometry won't overlap with itself.
I am searching for an article or tutorial that explains how one can draw primitive shapes (mainly simple lines) with a (neon) glow effect on them in the graphical output of a computer program. I do not want to do some sophisticated stuff like for example in modern first pirson shooters or alike. I am more in a search for a simple solution, like the lines in that picture: http://tjl.co/blog/wp-content/uploads/2009/05/NeonStripes.jpg -- but of course drawn by a computer program in my case.
The whole thing should run on a modern smart phone, so the hardware is a bit limited.
I do know a bit about OpenGL, but not too much, so unfortunately I am a bit lost here. Did some research on Google ("glow effect algoritm" and similar), but found either highly complex stuff for 3D games, or tutorials for Photoshop & co.
So what I would really need is an in-depth article on that subject, but not on a very advanced level. I hope thats even possible... I have just started with OpenGL, did some minor graphics programming in the past, but I am a long-year programmer now, so I would understand technical papers in general.
Does anyone of you know of such an article/paper/tutorial/anything?
Thanks in advance for all good advices!
Cheers!
Matthias
Its jus a bunch of lines with different brightness/transperency. Basically, if you want a glow effect for 1px line, in a size of 20 pixels, then you draw 41 lines with width of 1 px. The middle line is with your base colour, other lines get colours that gradiently go from base color to 100% transperency (like in your example) or darkest colour variant (if you have black background, no transparency).
That is it. :)
This isn't something I've ever done, but looking at your example, the basic approach I'd use to try and recreate it would be...
Start with an algorithm for drawing a filled shape large enough to include the original shape and the glow. For example, a rectangle becomes a slightly larger rectangle, but with rounded corners. An infinitessimally-wide line becomes a thickened line with semi-circular caps. Subtract out the original shape (and fill the pixels for that normally).
For each pixel in the glow, the colour depends on the shortest distance to any part of the original shape. This normally reduces to the distance to the nearest point on a line (e.g. one edge of a rectangle).
The distance is translated to a colour value using probably Hue-Saturation-Value or a similar colour scheme, as well as reducing alpha (increasing transparency). For neon glows, you probably want constant hue, decreasing brightness, maybe increasing saturation, and decreasing alpha.
Translate the HSV/whatever colour value to RGB for output. See this question.
EDIT - I should probably have said HSL rather than HSV - in HSL, if L is at it's maximum value, the resulting colour is always white. For HSV, that's only true if saturation is also at zero. See http://en.wikipedia.org/wiki/HSL_and_HSV
The real trick is that even on a phone these days, I'd guess you probably should use hardware (shaders) for this - sorry, I don't know how that's done.
The "painters algorithm" overlaying of gradually smaller shapes that others have described here is also a possibility, but (1) possibly slower, depending on implementation issues, and (2) you may need to draw to an off-screen buffer, with some special handling for the alpha channel, then blit back to the screen to handle the transparency correctly - if you need transparency, that is.
EDIT - Silly me. An alternative approach is to apply a blur to your original shape (in greyscale), but instead of writing out the blurred pixels directly, apply the colour-transformation to each blurred pixel value.
A blur is basically a weighted moving average. Technically, a finite impulse response filter is implemented using a convolution, but the maths for that is a tad awkward and if you just want "a blur" of about the right size, draw a grayscale circle of pixels as your "weights" image.
The blur in this case basically replaces the distance-from-shape calculation.
_____________________
| |
----|---------------------|-----> line
|_____________________|
gradient block
Break up your line into small non-overlapping blocks. Use whatever graphics primitive you have to draw a tilted rectangular gradient: the center is at 100% and the outer edge is at 0%.
Don't draw it on the image yet; you want to blend it with the image. Using regular transparency will just make it look like a random pipe or pole or something (unless you draw a white line, and your background is dark).
Here are two choices of blending mode:
color dodge: [blended pixel value] = (1-[overlay's pixel value]) / [bottom pixel value]
linear dodge: [blended pixel value] = max([overlay's pixel value]+[bottom pixel value], 1)
Then draw the line above the glow.
If you want to draw a curved "neon" line, simply draw it as a sequence of superimposed "neon dots" where each "neon dot" is a small circular image with transparency going from 0% at the origin to 100% at the edge of the circle.