Is it a reasonable optimization to omit calls to ID2D1HwndRenderTarget::DrawBitmap() if the image will end up outside the visible area? If I implement the checking logic in the application that will cost some performance, so if the first thing D2D does is doing the same check then I'd rather not do it.
I had a test with my application which renders some UI part using Direct2D (and attaching renderdoc), seems it is a bit random.
I render a mix of Rectangles, Text, Path geometries (beziers) and Rectangle with a bitmap brush (which should be equivalent to your DrawBitmap call).
Then I capture a frame with all those objects visible, and another one panning my UI (using transform) so objects are not visible.
From there could check what is drawn or not:
Text is always culled
Solid color rectangles are not culled
Most of the times path geometries are culled, but sometimes not.
Rectangle with bitmap brush are NEVER culled
So it seems Direct2D is making different decisions depending on the types of elements you plan to draw.
Since rectangles are easily batched and cheap to draw, it seems that they are just drawn regardless.
Bitmap rectangles and text require more work, so it seems they are effectively culled.
Path geometry was looking to depend on how many polygon the geometry is tesselated to (I had a path that was translating to 26 primitives and it was not culled, another one translating to 120 and it got culled).
So you can either trust Direct2D that it will perform that optimization, but I would personally implement a quick rectangle to rectangle check just in case (it's not gonna hurt your performances as its an extremely simple operation).
Related
I know that with QObjectPicker I can mouse pick a single entity. But how can I select multiple objects by drawing a rectangle on the screen?
I think this is actually pretty complicated. But here are my two cents:
If you only need to be able to select unoccluded objects
(i.e. don't need to select occluded ones) you could add a second frame graph branch to your existing one and draw each object with a unique color but to an offscreen texture. Then retrieve this texture, check which colors lie within the drawn rectangle and retrieve the corresponding objects and select them (compare to this question/answer).
I'm not sure how well this works in Qt3D because I've always had some issues with QRenderCapture. It didn't seem to have an impact where I added it in the frame graph, i.e. always captured the last state so maybe even if you have multiple render targets it might capture the wrong one etc. Qt3D is still in a pretty rough state I'd say.
If you need an example of how to render to an offscreen texture check out my example on GitHub.
If you need to be able to select occluded objects too
then it gets pretty complicated. I'm just providing some ideas here. I don't know if they will work.
If you don't have that many objects maybe you could implement the idea from above for each single object. I.e. for each object you have an offscreen frame graph branch that filters out all other objects. Then you could check each rendered texture for the rectangle drawn with the mouse. But again I'm not sure how well this works with Qt3D and if you have many objects (like in a game) it will probably crash because of the many offscreen textures.
You could also implement something like "inverse" frustum culling. In frustum culling, you omit rendering objects that lie outside the view frustum of the camera. You could compute a frustum using the rectangle coordinates drawn with the mouse. Check out the QFrustumCulling code. You would need to compute the planes differently of course, using a modified view matrix. When the user draws the rectangle, compute the frustum and check all objects. Unfortunately, this also selects objects whose bounding sphere intersects with the frustum, even though you might visible not touch any part of the object. If that bothers you, you could directly select all objects whose sphere is completely within the frustum and for all objects which only partly intersect do the intersection computation on a per-triangle basis and exit computation for the current object as soon as a triangle intersects the frustum. Depending on the number of triangles this could be very costly computational-wise.
I'd definitely stick to being able to select only unoccluded objects especially because picking in OpenGL seems to be realized by drawing the ojbects with colors these days.
Is there a way to universally multiply physics2D calculations on the canvas?
I'm trying to make a set of canvas UI elements with 2D physic properties. The objects contain images and text, but need to respond to gravity, impacts, and overlapping collision boxes with other GUI elements.
I've added 2D RigidBody and boxCollider components to my objects. However, they move very slowly. If given a gravity, they fall slowly. If overlapped, they push each other apart slowly.
I've figured out that this is due to the canvas having a very large scale. My objects are effectively 'very big and very far away'.
I can't modify the canvas scale. It needs to be huge or I get render artifacts.
I can't just modify gravity because it doesn't provide a universal fix. Things fall faster, but they don't push apart or spring right.
I can't modify the timestep because it affects the whole world, not just the canvas.
My canvas objects have widths akin to 80, where unity physics expects widths akin to 1. How can I get them to behave like they have a width of 1?
Is there some universal scaling factor for canvas based physics, or am I simply mis-using the canvas for something it is not intended for?
if you are still having this problem, the answer to fixing the movement rates of your scaled-up objects is to scale up your movement forces as well as your gravity. If you can't get certain elements to work right, use a forcepush that you can set to any strength.
OpenGL Question:I have something to ask about clip space transformation. I am reading an online tutorial and it says that everything you draw outside the clip space will be clipped. When it come to this, does the elements outside the clip space affects the performance or not? Because it will not be drawn and thus it doesn't affect.
Assuming that it will affect performance and in case of 2d game like super mario, I am thinking about not to draw the elements outside the clip space to achieve better performance. Please clarify. Thanks.
OpenGL has only a certain amount of knowledge about your scene and will clip very late in the pipeline. It can't apply a broad phase test. Assuming you can, you should.
Supposing you had a model with 30,000 triangles, OpenGL would transform each and every one of those 30,000 triangles before considering clipping. If you know something as simple as the bounding sphere for the model it's possible you could see that the whole thing is completely outside of the frustum in a single test and save almost 30,000 extra bits of effort.
In a 2d game like Mario what this usually means is using the scroll position to index into the map and to generate geometry only for potentially visible tiles and sprites that are within the visible area.
For the map that will generally just men figuring out the (x, y) of one corner and then generating geometry for the known width and height of the screen so it means discarding the vast majority of the geometry with zero processing.
For the sprites, this is generally why in those sort of games you often see enemies reset to their starting position if you walk a little way from them and then walk back: they're added to the active list based on a map location trigger and removed when you walk far enough away. While not active, no mutable storage is afforded to them.
I have a general question (I know I should present specific code with a problem, but in my case the problem is of a more general nature).
In Processing, let's say I make an ellipse:
ellipse(30, 30, 10, 10);
Now, is there a way to get the pixels where this ellipse is on the canvas? The reason would be to have a way of creating user interaction with the mouse (for instance). So when someone clicks the mouse over the ellipse, something happens.
I thought of turning everything into objects and use a constructor to somehow store the position of the shape, but this is easier said than done, particularly for more complex shapes. And that is what I am interested in. It's one thing to calculate the position of an ellipse, but what about more complex shapes? Are there any libraries?
Check out the geomerative library. It has a way to check whether the mouse is inside any SVG shape. I can't remember off the top of my head but it works something like you make a shape:
myShape = RG.loadShape("shape.svg");
and a point:
RPoint p = new RPoint(mouseX, mouseY);
and the boolean function contains() will tell you if the point is inside the shape:
myShape.contains(p);
It's better to use a mathematical formula than pixel-by-pixel checking of the mouse position (it's much faster, and involves less code).
For a perfect circle, you can calculate the Euclidean distance using Pythagoras' theorem. Assume your circle is centred at position (circleX,circleY), and has a radius (not diameter) of circleR. You can check if the mouse is over the circle like this:
if(sq(mouseX-circleX)+sq(mouseY-circleY) <= sq(circleR)) {
// mouse is over circle
} else {
// mouse is not over circle
}
This approach basically imagines a right-angled triangle, where the hypotenuse (the longest side) runs from the centre of the circle to the mouse position. It uses Pythagoras' theorem to calculate the length of that hypotenuse, and if it's less than the circle's radius then the mouse is inside the circle. (It includes a slight optimisation though -- it's comparing squares to avoid doing a square root, as that can be comparatively slow.)
An alternative to my original mathematical answer also occurred to me. If you can afford the memory and processing power of drawing all your UI elements twice then you can get good results by using a secondary buffer.
The principle involves having an off-screen graphics buffer (e.g. using PGraphics). It must be exactly the same size as the main display, and have anti-aliasing disabled. Draw all your interactive UI elements (buttons etc.) to this buffer. However, instead of drawing them the normal way, give each one a unique colour which it uses for fill and stroke (don't add any text or images... just solid colours). For example, one button might be entirely red, and another entirely green. Any other RGB value works, as long as each item has a unique colour. Make sure the background has a unique colour too.
The user never sees that buffer, so don't draw it to the screen (unless you're debugging or something). When you want to detect what item the mouse is over, just lookup the mouse position on that off-screen buffer. Get the pixel colour at that location, and match it to the UI element.
After you've done all that, just go ahead and draw everything to the main display as normal.
It's worth noting that you can cut-down the processing time of this approach a lot if your UI elements never (or rarely) move. You only need to redraw the secondary buffer when something appears/disappears, animates, or changes size/position.
I have several thousand quads to draw, some of which might fall entirely outside the viewport. I could write code which will detect which quads fall wholly outside viewport and ask OpenGL to draw only those which will be at least partially visible. Alternatively, I could simply have OpenGL draw all of the quads, regardless of whether they intersect with the viewport.
I don't have enough experience with OpenGL to know if one of these is obviously better (or if OpenGL offers some quick viewport intersection test I can use). Are draws outside the viewport close to being no-ops, or are they expensive enough that I should I try to avoid them?
It depends on your circumstances.
Drawing is best done in batches, preferably batches that are static in structure (ie: each batch is drawn in its entirety). So you shouldn't be culling down at the quad level. But doing some culling of large groups of quads is not unwelcome.
The primary performance that you'll lose is vertex transform (aka: your vertex shader). A vertex shader has to be run on every vertex you provide, regardless of anything else. However, hardware will discard triangles that are trivially outside of the viewport, so you won't soak up any fillrate or other performance.
However, that doesn't mean that it's OK if your vertex T&L is cheap. Rendering large blocks of triangles that aren't visible may very well stall the rasterizer, because all of the triangles are being culled. That is, if you draw a lot of stuff that gets culled by being off screen, the fillrate that you might have used on actually visible triangles may be lost.
So it's not a good idea to just hurl geometry at the GPU willy-nilly.
In any case, if you're doing 2D rendering, coarse culling of discrete groups of quads is really all you need. You could divide your tilemap into screen-sized portions, and you draw up to 4 of these based on the position of the camera.