How to use multiple sessions per connection in a multi-threaded application? - jms

Suppose I have one connection c and many session objects s1, s2 .. sn, each working in different threads t1, t2 ... tn.
c
|
-------------------------------------------------
| | | |
(t1,s1) (t2,s2) (t3,s3) ...... (tn,sn)
Now suppose one of the thread t3 wants to send a message to a particular queue q3 and then listen to the reply asynchronously. So it does the following:
1: c.stop();
2: auto producer = s3.createProducer(s3.createQueue(q3));
3: auto text = s3.createTextMessage(message);
4: auto replyQueue = s3.createTemporaryQueue();
5: text.setJMSReplyTo(replyQueue);
6: producer.send(text);
7: auto consumer = s3.createConsumer(replyQueue);
8: consumer.setMessageListener(myListener);
9: c.start();
The reason why I called c.stop() in the beginning and then c.start() in the end, because I'm not sure if any of the other threads has called start on the connection (making all the sessions asynchronous — is that right?) and as per the documentation:
"If synchronous calls, such as creation of a consumer or producer, must be made on an asynchronous session, the Connection.Stop must be called. A session can be resumed by calling the Connection.Start method to start delivery of messages."
So calling stop in the beginning of the steps and then start in the end seems reasonable and thus the code seems correct (at least to me). However, when I thought about it more, I think the code is buggy, as it doesn't make sure no other threads call start before t3 finishes all the steps.
So my questions are:
Do I need to use mutex to ensure it? Or the XMS handles it automatically (which means my reasoning is wrong)?
How to design my application so that I dont have to call stop and start everytime I want to send a messages and listen reply asynchronously?
As per the quoted text above, I cannot call createProducer() and createConsumer() if the connection is in asynchronous mode. What are other methods I cannot call? The documentation doesn't categorise the methods in this way:
Also, the documentation doesn't say clearly what makes a session asynchronous. It says this:
"A session is not made asynchronous by assigning a message listener to a consumer. A session becomes asynchronous only when the Connection.Start method is called."
I see two problems here:
Calling c.start() makes all sessions asynchronous, not just one.
If I call c.start() but doesn't assign any message listener to a consumer, are the session(s) still asynchronous?
It seems I've lots of questions, so it'd be great if anyone could provide me with links to the parts or sections of the documentation which explains XMS objects with such minute details.
This says,
"According to the specification, calling stop(), close() on a Connection, setMessageListener() on a Session etc. must wait till all message processing finishes, that is till all onMessage() calls which have already been entered exit. So if anyone attempts to do that operation inside onMessage() there will be a deadlock by design."
But I'm not sure if that information is authentic, as I didn't find this info on IBM documentation.

I prefer the KIS rule. Why don't you use 1 connection per thread? Hence, the code would not have to worry about conflicts between threads.

Related

zeromq: ZMQ_CONFLATE==1 does not stop queues from saving old messages

With ZeroMQ and CPPZMQ 4.3.2, I want to drop old messages for all my sockets including
PAIR
Pub/Sub
REQ/REP
So I use m_socks[channel].setsockopt(ZMQ_CONFLATE, 1) on all my sockets before binding/connecting.
Test
However, when I made the following test, it seems that the old messages are still flushed out on each reconnection. In this test,
I use a thread to keep sending generated sinewave to a receiver thread
Every 10 seconds I double the sinewave's frequency
Then after 10 seconds I stop the process
Below is the pseudocode of the sender
// on sender end
auto thenSec = high_resolution_clock::now();
while(m_isRunning) {
// generate sinewave, double the frequency every 10s or so
auto nowSec = high_resolution_clock::now();
if (duration_cast<seconds>(nowSec - thenSec).count() > 10) {
m_sine.SetFreq(m_sine.GetFreq()*2);
thenSec = nowSec;
}
m_sine.Generate(audio);
// send to rendering thread
m_messenger.send("inproc://sound-ear.pair",
(const void*)(audio),
audio_size,
zmq::send_flags::dontwait
);
}
Note that I already use DONTWAIT to mitigate blocking.
On the receiver side I have a zmq::poller_event handler that simply receives the last message on event polling.
In the stop sequence I reset the sinewave frequency to its lowest value, say, 440Hz.
Expected
The expected behaviour would be:
If I stop both the sender and the receiver after 10s when the frequency is doubled,
and I restart both,
then I should see the sinewave reset to 440Hz.
Observed
But the observed behaviour is that the received sinewave is still of the doubled frequency after restarting the communication, i.e., 880Hz.
Question
Am I doing it wrong or should I use some kind of killswitch to force drop all messages in this case?
OK, I think I solved it myself. Kind of.
Actual solution
I finally realized that the behaviour I want is to flush all messages when I stop the rendering. According to the official doc(How can I flush all messages that are in the ZeroMQ socket queue?), this can only be achieved by
set the sockets of both sender's and receiver's ZMQ_LINGER option to 0, meaning to keep nothing on closing those sockets;
closing the sockets on both sender and receiver ends, which also involves bootstrapping pollers and all references to the sockets.
This seems a lot of unnecessary work if I'm to restart rendering my data again, right after the stop sequence. But I found no other way to solve this cleanly.
Initial effort
It seems to me that ZMQ_CONFLATE does not make a difference on PAIR. I really have to tweak high water marks on sender and receiver ends using ZMQ_SNDHWM and ZMQ_RCVHWM.
However, I said "kind of solved" because tweaking HWM in the end is not the optimal solution for a realtime application,
having ZMQ_SNDHWM / ZMQ_RCVHWM set to the minimum "1", we still have a sizable latency in terms of realtime.
Also, the consumer thread could fall into underrun situatioin, i.e., perceivable jitters with the lowest HWM.
If I'm not doing anything wrong, I guess the optimal solution would still be shared memory for my targeted scenario. This is sad because I really enjoyed the simplicity of ZMQ's multicast messaging patternsand hate to deal with thread locking littered everywhere.

Should dbms_aq.dequeue loop forever?

Here my first steps with Oracle Advanced Queueing...
Szenario: I have a running application where many, many multiple independ processes report back to a central controller to handle the next steps. Simplified the processes are started via cron or via callback of a just finished process.The callbacks are from remote hosts via http -> php -> DB, basicly one http-call after the process has finished on the remote host.
The complete controller logic was written in pl/sql with a singleton concept in mind, so only one process should execute the controller logic at the same time. In fact in 99% of all calls this is not necessary, but that's not the kind of thing I could change at the moment (nor the architecture in general).
To ensure this there is actually a bad mutex implementation, pseudo-code
$mutex = false;
while( not $mutex )
{
$mutex = getMutex();
if( $mutex )
executeController();
else
sleep(5);
}
Wherein the mutex is a one field table having the values 0 (=> "free") or 1 ( => "busy" )
The result of this "beautiful" contstruction is log-file full of "Hey! Got no mutex! Waiting...". And the more processes wait, the longer they wait with no control of who's next. Sometimes the load gets so heavy that the apache first forks and finally dies...
Solution
So my first "operation" would be to replace the mutex with Oracle Advanced Queueing with the controller as single-consumer. Benefits: No more "busy waiting" within the apache layer, strict first come first serve.
( Because all the DB-Actions take place in the same oracle-schema, this could be achieved with standard-objects, pl/sql-methods as well. But why reinvent the wheel, if there are dbms-packages?)
As far as I read using the listen-feature (polling the queued items) in this context is far better than the registration-feaure (scheduling an action when a message arrives).
Basicly everything works fine, i managed to:
create the message type
create the queue-table
create the queue
start the queue
add USER as subscriber
create a procedure for enqueueing
create a procedure for processing & dequeueing
create a procedure for listening to the queue and calling the "process & dequeue"-function when a message arrives.
Of course the listener shall be active 24/7, so i specified no "wait" time. In general depending on the time of the day he will get "something to do" at least every few minutes, more likely every few seconds, sometimes more.
Now here is my problem (if it actually is a problem), i just wrote it according to the examples i found so far:
CREATE OR REPLACE PROCEDURE demo_aq_listener IS
qlist dbms_aq.aq$_agent_list_t;
agent_w_msg sys.aq$_agent;
BEGIN
qlist(0) := sys.aq$_agent(USER, 'demo_aq_queue', NULL);
LOOP
dbms_aq.listen(agent_list => qlist, agent => agent_w_msg);
DEMO_AQ_DEQUEUE();--process & dequeue
END LOOP;
END;
/
Calling the procedure basically does what i expect: It stays "up" and prosseces the queued messages.
But is this the way to do this? What does it do if there are no queued messages? "Sleeping" within the dbms_aq.listen-routine or "Looping as fast as it can", so that I just have implemented another way of "busy waiting"? Might there be a timeout (maybe on oss-level or elsewhere) i just didn't reach?
Here is the complete code with queue-definition etc.: demo_dbms_aq_with_listener.sql
UPDATE
Through further testing i just realized that it seems, that i got a far greater lack of understanding then i hoped :(
On "execution level" don't using the listener at all and just looping the dequeue function has the same effect: It waits for the first/next message
CREATE OR REPLACE PROCEDURE demo_aq_listener IS
BEGIN
LOOP
DEMO_AQ_DEQUEUE();
END LOOP;
END;
/
At least this is easier to test, calling only
BEGIN
DEMO_AQ_DEQUEUE();
END;
/
Also just waits for the first message. Which leaves me totally confused wether I need the listener at all and if what i'am doing does make any sense at all :(
Conclusion
I don't need the listener at all, because i have a single consumer who can treat all messages in the same way.
But the key/core Question stays the same: Is it ok to keep DBMS_AQ.DEQUEUE on "maybe active waiting" in a loop knowing it'll get messages all day long in short intervalls?
(you'll find DEMO_AQ_DEQUEUE() in linked sql-file above)
Better late than never, everything's fine, it is idle waiting:
1) Whilst the DEQUEUE is in sleep mode (WAIT FOREVER), I can see the session is waiting on the event - "Streams AQ: waiting for messages in the queue", that is an IDLE wait class and not actually consuming ANY resources, correct ?
Correct. It's similar to waiting on a row lock on a table. You just "sit there"
https://asktom.oracle.com/pls/apex/asktom.search?tag=writing-a-stand-alone-application-to-continuously-monitor-a-database-queue-aq

3 queues + 1 finish or device-side checkpoints for all queues

Is there a special "wait for event" function that can wait for 3 queues at the same time at device side so it doesn't wait for all queues serially from host side?
Is there a checkpoint command to send into a command queue such that it must wait for other command queues to hit same(vertically) barrier/checkpoint to wait and continue from device side so no host-side round-trip is needed?
For now, I tried two different versions:
clWaitForEvents(3, evt_);
and
int evtStatus0 = 0;
clGetEventInfo(evt_[0], CL_EVENT_COMMAND_EXECUTION_STATUS,
sizeof(cl_int), &evtStatus0, NULL);
while (evtStatus0 > 0)
{
clGetEventInfo(evt_[0], CL_EVENT_COMMAND_EXECUTION_STATUS,
sizeof(cl_int), &evtStatus0, NULL);
Sleep(0);
}
int evtStatus1 = 0;
clGetEventInfo(evt_[1], CL_EVENT_COMMAND_EXECUTION_STATUS,
sizeof(cl_int), &evtStatus1, NULL);
while (evtStatus1 > 0)
{
clGetEventInfo(evt_[1], CL_EVENT_COMMAND_EXECUTION_STATUS,
sizeof(cl_int), &evtStatus1, NULL);
Sleep(0);
}
int evtStatus2 = 0;
clGetEventInfo(evt_[2], CL_EVENT_COMMAND_EXECUTION_STATUS,
sizeof(cl_int), &evtStatus2, NULL);
while (evtStatus2 > 0)
{
clGetEventInfo(evt_[2], CL_EVENT_COMMAND_EXECUTION_STATUS,
sizeof(cl_int), &evtStatus2, NULL);
Sleep(0);
}
second one is a bit faster(I saw it from someone else) and both are executed after 3 flush commands.
Looking at CodeXL profiler results, first one waits longer between finish points and some operations don't even seem to be overlapping. Second one shows 3 finish points are all within 3 milliseconds so it is faster and longer parts are overlapped(read+write+compute at the same time).
If there is a way to achieve this with only 1 wait command from host side, there must a "flush" version of it too but I couldn't find.
Is there any way to achieve below picture instead of adding flushes between each pipeline step?
queue1 write checkpoint write checkpoint write
queue2 - compute checkpoint compute checkpoint compute
queue3 - checkpoint read checkpoint read
all checkpoints have to be vertically synchronized and all these actions must not start until a signal is given. Such as:
queue1.ndwrite(...);
queue1.ndcheckpoint(...);
queue1.ndwrite(...);
queue1.ndcheckpoint(...);
queue1.ndwrite(...);
queue2.ndrangekernel(...);
queue2.ndcheckpoint(...);
queue2.ndrangekernel(...);
queue2.ndcheckpoint(...);
queue2.ndrangekernel(...);
queue3.ndread(...);
queue3.ndcheckpoint(...);
queue3.ndread(...);
queue3.ndcheckpoint(...);
queue3.ndread(...);
queue1.flush()
queue2.flush()
queue3.flush()
queue1.finish()
queue2.finish()
queue3.finish()
checkpoints are all handled in device side and only 3 finish commands are needed from host side(even better,only 1 finish for all queues?)
How I bind 3 queues to 3 events with "clWaitForEvents(3, evt_);" for now is:
hCommandQueue->commandQueue.enqueueBarrierWithWaitList(NULL, &evt[0]);
hCommandQueue2->commandQueue.enqueueBarrierWithWaitList(NULL, &evt[1]);
hCommandQueue3->commandQueue.enqueueBarrierWithWaitList(NULL, &evt[2]);
if this "enqueue barrier" can talk with other queues, how could I achieve that? Do I need to keep host-side events alive until all queues are finished or can I delete them or re-use them later? From the documentation, it seems like first barrier's event can be put to second queue and second one's barrier event can be put to third one along with first one's event so maybe it is like:
hCommandQueue->commandQueue.enqueueBarrierWithWaitList(NULL, &evt[0]);
hCommandQueue2->commandQueue.enqueueBarrierWithWaitList(evt_0, &evt[1]);
hCommandQueue3->commandQueue.enqueueBarrierWithWaitList(evt_0_and_1, &evt[2]);
in the end wait for only evt[2] maybe or using only 1 same event for all:
hCommandQueue->commandQueue.enqueueBarrierWithWaitList(sameEvt, &evt[0]);
hCommandQueue2->commandQueue.enqueueBarrierWithWaitList(sameEvt, &evt[1]);
hCommandQueue3->commandQueue.enqueueBarrierWithWaitList(sameEvt, &evt[2]);
where to get sameEvt object?
anyone tried this? Should I start all queues with a barrier so they dont start until I raise some event from host side or lazy-executions of "enqueue" is %100 trustable to "not to start until I flush/finish" them? How do I raise an event from host to device(sameEvt doesn't have a "raise" function, is it clCreateUserEvent?)?
All 3 queues are in-order type and are in same context. Out-of-order type is not supported by all graphics cards. C++ bindings are being used.
Also there are enqueueWaitList(is this deprecated?) and clEnqueueMarker but I don't know how to use them and documentation doesn't have any example in Khronos' website.
You asked too many questions and expressed too many variants to provide you with the only solution, so I will try to answer in general that you can figure out the most suitable solution.
If the queues are bind to the same context (possibly to different devices within the same context) than it is possible to synchronize them through the events. I.e. you can obtain an event from a command submitted to one queue and use this event to synchronize a command submitted to another queue, e.g.
queue1.enqueue(comm1, /*dependency*/ NULL, /*result event*/ &e1);
queue2.enqueue(comm2, /*dependency*/ &e1, /*result event*/ NULL);
In this example, comm2 will wait for comm1 completion.
If you need to enqueue commands first but no to allow them to be executed you can create user event (clCreateUserEvent) and signal it manually (clSetUserEventStatus). The implementation is allowed to process command as soon as they enqueued (the driver is not required to wait for the flush).
The barrier seems overkill for your purpose because it waits for all commands previously submitted to the queue. You can really use clEnqueueMarker that can be used to wait for all events and provide one event to be used for other commands.
As far as I know you can retain the event at any moment if you do not need it more. The implementation should prolong the event life-time if it is required for internal purposes.
I do not know what is enqueueWaitList.
Off-topic: if you need non-trivial dependencies between calculations you may want to consider TBB flow graph and opencl_node. The opencl_node uses events for syncronization and avoids "host-device" synchronizations if possible. However, it can be tricky to use multiple queues for the same device.
As far as I know, Intel HD Graphics 530 supports out-of-order queues (at least host-side).
You are making it much harder than it needs to be. On the write queue take an event. Use that as a condition for the compute on the compute queue, and take another event. Use that as a condition on the read on the read queue. There is no reason to force any other synchronization. Note: My interpretation of the spec is that you must clFlush on a queue that you took an event from before using that event as a condition on another queue.

Elegant way to stop socket read operation from outside

I implemented a small client server application in Ruby and I have the following problem: The server starts a new client session in a new thread for each connecting client, but it should be possible to shutdown the server and stop all the client sessions in a 'polite' way from outside without just killing the thread while I don't know which state it is in.
So I decided that the client session object gets a `stop' flag which can be set from outside and is checked before each action. The problem is that it should not wait for the client, if it is just waiting for a request. I have the following temporary solution:
def read_client
loop do
begin
timeout(1) { return #client.gets }
rescue Timeout::Error
if #stop
stop # Notifies the client and closes the connection
return nil
end
end
end
end
But that sucks, looks terrible and intuitively, this should be such a normal thing that there has to be a `normal' solution to it. I don't even know if it is safe or if it could happen that the gets operation reads part of the client request, but not all of it.
Another side question is, if setting/getting a boolean flag is an atomic operation in Ruby (or if I need an additional Mutex for the flag).
Thread-per-client approach is usually a disaster for server design. Also blocking I/O is difficult to interrupt without OS-specific tricks. Check out non-blocking sockets, see for example, answers to this question.

Problem with Boost Asio asynchronous connection using C++ in Windows

Using MS Visual Studio 2008 C++ for Windows 32 (XP brand), I try to construct a POP3 client managed from a modeless dialog box.
Te first step is create a persistent object -say pop3- with all that Boost.asio stuff to do asynchronous connections, in the WM_INITDIALOG message of the dialog-box-procedure. Some like:
case WM_INITDIALOG:
return (iniPop3Dlg (hDlg, lParam));
Here we assume that iniPop3Dlg() create the pop3 heap object -say pointed out by pop3p-. Then connect with the remote server, and a session is initiated with the client’s id and password (USER and PASS commands). Here we assume that the server is in TRANSACTION state.
Then, in response to some user input, the dialog-box-procedure, call the appropriate function. Say:
case IDS_TOTAL: // get how many emails in the server
total (pop3p);
return FALSE;
case IDS_DETAIL: // get date, sender and subject for each email in the server
detail (pop3p);
return FALSE;
Note that total() uses the POP3’s STAT command to get how many emails in the server, while detail() uses two commands consecutively; first STAT to get the total and then a loop with the GET command to retrieve the content of each message.
As an aside: detail() and total() share the same subroutines -the STAT handle routine-, and when finished, both leaves the session as-is. That is, without closing the connection; the socket remains opened an the server in TRANSACTION state.
When any option is selected by the first time, the things run as expected, obtaining the desired results. But when making the second chance, the connection hangs.
A closer inspection show that the first time that the statement
socket_.get_io_service().run();
Is used, never ends.
Note that all asynchronous write and read routines uses the same io_service, and each routine uses socket_.get_io_service().reset() prior to any run()
Not also that all R/W operations also uses the same timer, who is reseted to zero wait after each operation is completed:
dTimer_.expires_from_now (boost::posix_time::seconds(0));
I suspect that the problem is in the io_service or in the timer, and the fact that subsequent executions occurs in a different load of the routine.
As a first approach to my problem, I hope that someone would bring some light in it, prior to a more detailed exposition of the -very few and simple- routines involved.
Have you looked at the asio examples and studied them? There are several asynchronous examples that should help you understand the basic control flow. Pay particular importance to the main event loop started by invoking io_service::run, it's important to understand control is not expected to return to the caller until the io_service has no more remaining work to do.

Resources