Algorithm to Produce an Evenly Spaced Grid - algorithm

I'm looking for a general algorithm for creating an evenly spaced grid, and I've been surprised how difficult it is to find!
Is this a well solved problem whose name I don't know?
Or is this an unsolved problem that is best done by self organising map?
More specifically, I'm attempting to make a grid on a 2D Cartesian plane in which the Euclidean distance between each point and 4 bounding lines (or "walls" to make a bounding box) are equal or nearly equal.
For a square number, this is as simple as making a grid with sqrt(n) rows and sqrt(n) columns with equal spacing positioned in the center of the bounding box. For 5 points, the pattern would presumably either be circular or 4 points with a point in the middle.
I didn't find a very good solution, so I've sadly left the problem alone and settled with a quick function that produces the following grid:

There is no simple general solution to this problem. A self-organizing map is probably one of the best choices.
Another way to approach this problem is to imagine the points as particles that repel each others and that are also repelled by the walls. As an initial arrangement, you could already evenly distribute the points up to the next smaller square number - for this you already have a solution. Then randomly add the remaining points.
Iteratively modify the locations to minimize the energy function based on the total force between the particles and walls. The result will of course depend on the force law, i.e. how the force depends on the distance.
To solve this, you can use numerical methods like FEM.
A simplified and less efficient method that is based on the same principle is to first set up an estimated minimal distance, based on the square number case which you can calculate. Then iterate through all points a number of times and for each one calculate the distance to its closest neighbor. If this is smaller than the estimated distance, move your point into the opposite direction by a certain fraction of the difference.
This method will generally not lead to a stable minimum but should find an acceptable solution after a number ot iterations. You will have to experiment with the stepsize and the number of iterations.
To summarize, you have three options:
FEM method: Efficient but difficult to implement
Self organizing map: Slightly less efficient, medium complexity of implementation.
Iteration described in last section: Less efficient but easy to implement.

Unfortunately your problem is still not very clearly specified. You say you want the points to be "equidistant" yet in your example, some pairs of points are far apart (eg top left and bottom right) and the points are all different distances from the walls.
Perhaps you want the points to have equal minimum distance? In which case a simple solution is to draw a cross shape, with one point in the centre and the remainder forming a vertical and horizontal crossed line. The gap between the walls and the points, and the points in the lines can all be equal and this can work with any number of points.

Related

Solving the sliding puzzle-like problem with arbitrary number of holes

I've tried searching for a while, but haven't come across a solution, so figured I would ask my own.
Consider an MxM 2D grid of holes, and a set of N balls which are randomly placed in the grid. You are given some final configuration of the N balls in the grid, and your goal is to move the balls in the grid to achieve this final configuration in the shortest time possible.
The only move you are allowed to make is to move any contiguous subsection of the grid (on either a row or column) by one space. That sounds a bit confusing; basically you can select any set of points in a straight line in the grid, and shift all the balls in that subsection by one spot to the left or right if it is a row, or one spot up or down if it is a hole. If that is confusing, it's fine to consider the alternate problem where the only move you can make is to move a single ball to any adjacent spot. The caveat is that two balls can never overlap.
Ultimately this problem basically boils down to a version of the classic sliding tile puzzle, with two key differences: 1) there can be an arbitrary number of holes, and 2) we don't a priori know the numbering of the tiles - we don't care which balls end up in the final holes, we just want to final holes to be filled after it is all said and done.
I'm looking for suggestions about how to go about adapting classic sliding puzzle solutions to these two constraints. The arbitrary number of holes is likely pretty easy to implement efficiently, but the fact that we don't know which balls are destined to go in which holes at the start is throwing me for a loop. Any advice (or implementations of similar problems) would be greatly appreciated.
If I understood well:
all the balls are equal and cannot be distinguished - they can occupy any position on the grid, the starting state is a random configuration of balls and holes on the grid.
there are nxn = balls + holes = number of cells in the grid
your target is to reach a given configuration.
It seems a rather trivial problem, so maybe I missed some constraints. If this is indeed the problem, solving it can be approached like this:
Consider that you move the holes, not the balls.
conduct a search between each hole and each hole position in the target configuration.
Minimize the number of steps to walk the holes to their closest target. (maybe with a BFS if it is needed) - That is to say that you can use this measure as a heuristic to order the moves in a flavor of A* maybe. I think for a 50x50 grid, the search will be very fast, because your heuristic is extremely precise and nearly costless to calculate.
Solving the problem where you can move a hole along multiple positions on a line, or a file is not much more complicated; you can solve it by adding to the possible moves/next steps in your queue.

Mapping 2D points to a fixed grid

I have any number of points on an imaginary 2D surface. I also have a grid on the same surface with points at regular intervals along the X and Y access. My task is to map each point to the nearest grid point.
The code is straight forward enough until there are a shortage of grid points. The code I've been developing finds the closest grid point, displaying an already mapped point if the distance will be shorter for the current point.
I then added a second step that compares each mapped point to another and, if swapping the mapping with another point produces a smaller sum of the total mapped distance of both points, I swap them.
This last step seems important as it reduces the number crossed map lines. (This would be used to map points on a plate to a grid on another plate, with pins connecting the two, and lines that don't cross seem to have a higher chance that the pins would not make contact.)
Questions:
Can anyone comment on my thinking that if the image above were truly optimized, (that is, the mapped points--overall--would have the smallest total distance), then none of the lines were cross?
And has anyone seen any existing algorithms to help with this. I've searched but came up with nothing.
The problem could be approached as a variation of the Assignment Problem, with the "agents" being the grid squares and the points being the "tasks", (or vice versa) with the distance between them being the "cost" for that agent-task combination. You could solve with the Hungarian algorithm.
To handle the fact that there are more grid squares than points, find a bounding box for the possible grid squares you want to consider and add dummy points that have a cost of 0 associated with all grid squares.
The Hungarian algorithm is O(n3), perhaps your approach is already good enough.
See also:
How to find the optimal mapping between two sets?
How to optimize assignment of tasks to agents with these constraints?
If I understand your main concern correctly, minimising total length of line segments, the algorithm you used does not find the best mapping and it is clear in your image. e.g. when two line segments cross each other, simple mathematic says that if you rearrange their endpoints such that they do not cross, it provides a better total sum. You can use this simple approach (rearranging crossed items) to get better approximation to the optimum, you should apply swapping for more somehow many iterations.
In the following picture you can see why crossing has longer length than non crossing (first question) and also why by swapping once there still exists crossing edges (second question and w.r.t. Comments), I just drew one sample, in fact one may need many iterations of swapping to get non crossed result.
This is a heuristic algorithm certainly not optimum but I expect to be very good and efficient and simple to implement.

Find overlapping circles

I have a rectangular area where there are circles with equal radius. I want to find which circles overlap with other circles (the output is a list of 2-element sets of overlapping circles).
I know how to check if two of the circles overlap (the distance between their centers is less than the diameter). I can perform this check for every pair of circles, but I was wondering if there is a better algorithm (faster than O(n^2)).
EDIT
The number of circles is usually about 100 and overlappings won't happen very often.
Here is some context:
The rectangle is a battlefield in a game. The movement of the units is done on small steps and I'm trying to detect collisions between units.
Given the new explanation of the problem statement, I would recommend a different approach.
Overlay a square grid over the battlefield, with a grid step equal to one circle diameter. Every circle can overlap at most four cells. In each cell, keep a list of the overlapping circles (and update it on every move).
Detecting potential collisions will now take about four cell/circle tests per circle, i.e. close to linear time.
For a simple solution, insert the centers in a 2d-tree and perform circular range queries around every center with a query radius 2R. In good conditions, this can be O(N Log(N)).
Alternatively, just sort the centers on X and try all circles in turn: by dichotomic search, locate the abscissa Xc and scan to Xc-2R and to Xc+2R, then check the 2D distance.
The cost of the dichotomic searches will be O(N Log(N)). If the circles are uniformly spread out in a square of side S, a stripe of width 4R contains 4RN/S circles, hence a total comparison cost of 4RN²/S. This is a good performance if S is large (think that for N tightly packed circles in a square, S~2R√N, hence 2N√N comparisons).
Direct answer: You cannot get better than O(n^2) in general since the circles could potentially all overlap, so you have to generate n^2 answers.
If you get more specific, you might get better answers. For example, if what you are really trying to do is find bounding spheres in a 2D simulation, you can profit from the fact that entities only move so far between frames, if the circles are sparse it's different from when they are tightly packed, etc. So let us know more about what it's all about.
EDIT: You edited your question - you indeed are looking for collision detection in a 2D simulation. If you check out https://en.wikipedia.org/wiki/Collision_detection , they point to several algorithms for exactly your case.
I like the one detailed right on that page where you keep one list of bounding intervals per axis (2 in "2D") and only need to "work hard" when those bounding intervals (which are themself by definition one-dimensional) change (i.e., there "overlap state"). This removes the O(n²) for well-behaved cases. They don't give an estimate for the complexity of that, but as it basically comes down to sorting, it looks more or less O(n logn) to me, and less when there are only minimal changes between frames.

Randomly and efficiently filling space with shapes

What is the most efficient way to randomly fill a space with as many non-overlapping shapes? In my specific case, I'm filling a circle with circles. I'm randomly placing circles until either a certain percentage of the outer circle is filled OR a certain number of placements have failed (i.e. were placed in a position that overlapped an existing circle). This is pretty slow, and often leaves empty spaces unless I allow a huge number of failures.
So, is there some other type of filling algorithm I can use to quickly fill as much space as possible, but still look random?
Issue you are running into
You are running into the Coupon collector's problem because you are using a technique of Rejection sampling.
You are also making strong assumptions about what a "random filling" is. Your algorithm will leave large gaps between circles; is this what you mean by "random"? Nevertheless it is a perfectly valid definition, and I approve of it.
Solution
To adapt your current "random filling" to avoid the rejection sampling coupon-collector's issue, merely divide the space you are filling into a grid. For example if your circles are of radius 1, divide the larger circle into a grid of 1/sqrt(2)-width blocks. When it becomes "impossible" to fill a gridbox, ignore that gridbox when you pick new points. Problem solved!
Possible dangers
You have to be careful how you code this however! Possible dangers:
If you do something like if (random point in invalid grid){ generateAnotherPoint() } then you ignore the benefit / core idea of this optimization.
If you do something like pickARandomValidGridbox() then you will slightly reduce the probability of making circles near the edge of the larger circle (though this may be fine if you're doing this for a graphics art project and not for a scientific or mathematical project); however if you make the grid size 1/sqrt(2) times the radius of the circle, you will not run into this problem because it will be impossible to draw blocks at the edge of the large circle, and thus you can ignore all gridboxes at the edge.
Implementation
Thus the generalization of your method to avoid the coupon-collector's problem is as follows:
Inputs: large circle coordinates/radius(R), small circle radius(r)
Output: set of coordinates of all the small circles
Algorithm:
divide your LargeCircle into a grid of r/sqrt(2)
ValidBoxes = {set of all gridboxes that lie entirely within LargeCircle}
SmallCircles = {empty set}
until ValidBoxes is empty:
pick a random gridbox Box from ValidBoxes
pick a random point inside Box to be center of small circle C
check neighboring gridboxes for other circles which may overlap*
if there is no overlap:
add C to SmallCircles
remove the box from ValidBoxes # possible because grid is small
else if there is an overlap:
increase the Box.failcount
if Box.failcount > MAX_PERGRIDBOX_FAIL_COUNT:
remove the box from ValidBoxes
return SmallCircles
(*) This step is also an important optimization, which I can only assume you do not already have. Without it, your doesThisCircleOverlapAnother(...) function is incredibly inefficient at O(N) per query, which will make filling in circles nearly impossible for large ratios R>>r.
This is the exact generalization of your algorithm to avoid the slowness, while still retaining the elegant randomness of it.
Generalization to larger irregular features
edit: Since you've commented that this is for a game and you are interested in irregular shapes, you can generalize this as follows. For any small irregular shape, enclose it in a circle that represent how far you want it to be from things. Your grid can be the size of the smallest terrain feature. Larger features can encompass 1x2 or 2x2 or 3x2 or 3x3 etc. contiguous blocks. Note that many games with features that span large distances (mountains) and small distances (torches) often require grids which are recursively split (i.e. some blocks are split into further 2x2 or 2x2x2 subblocks), generating a tree structure. This structure with extensive bookkeeping will allow you to randomly place the contiguous blocks, however it requires a lot of coding. What you can do however is use the circle-grid algorithm to place the larger features first (when there's lot of space to work with on the map and you can just check adjacent gridboxes for a collection without running into the coupon-collector's problem), then place the smaller features. If you can place your features in this order, this requires almost no extra coding besides checking neighboring gridboxes for collisions when you place a 1x2/3x3/etc. group.
One way to do this that produces interesting looking results is
create an empty NxM grid
create an empty has-open-neighbors set
for i = 1 to NumberOfRegions
pick a random point in the grid
assign that grid point a (terrain) type
add the point to the has-open-neighbors set
while has-open-neighbors is not empty
foreach point in has-open-neighbors
get neighbor-points as the immediate neighbors of point
that don't have an assigned terrain type in the grid
if none
remove point from has-open-neighbors
else
pick a random neighbor-point from neighbor-points
assign its grid location the same (terrain) type as point
add neighbor-point to the has-open-neighbors set
When done, has-open-neighbors will be empty and the grid will have been populated with at most NumberOfRegions regions (some regions with the same terrain type may be adjacent and so will combine to form a single region).
Sample output using this algorithm with 30 points, 14 terrain types, and a 200x200 pixel world:
Edit: tried to clarify the algorithm.
How about using a 2-step process:
Choose a bunch of n points randomly -- these will become the centres of the circles.
Determine the radii of these circles so that they do not overlap.
For step 2, for each circle centre you need to know the distance to its nearest neighbour. (This can be computed for all points in O(n^2) time using brute force, although it may be that faster algorithms exist for points in the plane.) Then simply divide that distance by 2 to get a safe radius. (You can also shrink it further, either by a fixed amount or by an amount proportional to the radius, to ensure that no circles will be touching.)
To see that this works, consider any point p and its nearest neighbour q, which is some distance d from p. If p is also q's nearest neighbour, then both points will get circles with radius d/2, which will therefore be touching; OTOH, if q has a different nearest neighbour, it must be at distance d' < d, so the circle centred at q will be even smaller. So either way, the 2 circles will not overlap.
My idea would be to start out with a compact grid layout. Then take each circle and perturb it in some random direction. The distance in which you perturb it can also be chosen at random (just make sure that the distance doesn't make it overlap another circle).
This is just an idea and I'm sure there are a number of ways you could modify it and improve upon it.

Space partitioning algorithm

I have a set of points which are contained within the rectangle. I'd like to split the rectangles into subrectangles based on point density (giving a number of subrectangles or desired density, whichever is easiest).
The partitioning doesn't have to be exact (almost any approximation better than regular grid would do), but the algorithm has to cope with the large number of points - approx. 200 millions. The desired number of subrectangles however is substantially lower (around 1000).
Does anyone know any algorithm which may help me with this particular task?
Just to understand the problem.
The following is crude and perform badly, but I want to know if the result is what you want>
Assumption> Number of rectangles is even
Assumption> Point distribution is markedly 2D (no big accumulation in one line)
Procedure>
Bisect n/2 times in either axis, looping from one end to the other of each previously determined rectangle counting "passed" points and storing the number of passed points at each iteration. Once counted, bisect the rectangle selecting by the points counted in each loop.
Is that what you want to achieve?
I think I'd start with the following, which is close to what #belisarius already proposed. If you have any additional requirements, such as preferring 'nearly square' rectangles to 'long and thin' ones you'll need to modify this naive approach. I'll assume, for the sake of simplicity, that the points are approximately randomly distributed.
Split your initial rectangle in 2 with a line parallel to the short side of the rectangle and running exactly through the mid-point.
Count the number of points in both half-rectangles. If they are equal (enough) then go to step 4. Otherwise, go to step 3.
Based on the distribution of points between the half-rectangles, move the line to even things up again. So if, perchance, the first cut split the points 1/3, 2/3, move the line half-way into the heavy half of the rectangle. Go to step 2. (Be careful not to get trapped here, moving the line in ever decreasing steps first in one direction, then the other.)
Now, pass each of the half-rectangles in to a recursive call to this function, at step 1.
I hope that outlines the proposal well enough. It has limitations: it will produce a number of rectangles equal to some power of 2, so adjust it if that's not good enough. I've phrased it recursively, but it's ideal for parallelisation. Each split creates two tasks, each of which splits a rectangle and creates two more tasks.
If you don't like that approach, perhaps you could start with a regular grid with some multiple (10 - 100 perhaps) of the number of rectangles you want. Count the number of points in each of these tiny rectangles. Then start gluing the tiny rectangles together until the less-tiny rectangle contains (approximately) the right number of points. Or, if it satisfies your requirements well enough, you could use this as a discretisation method and integrate it with my first approach, but only place the cutting lines along the boundaries of the tiny rectangles. This would probably be much quicker as you'd only have to count the points in each tiny rectangle once.
I haven't really thought about the running time of either of these; I have a preference for the former approach 'cos I do a fair amount of parallel programming and have oodles of processors.
You're after a standard Kd-tree or binary space partitioning tree, I think. (You can look it up on Wikipedia.)
Since you have very many points, you may wish to only approximately partition the first few levels. In this case, you should take a random sample of your 200M points--maybe 200k of them--and split the full data set at the midpoint of the subsample (along whichever axis is longer). If you actually choose the points at random, the probability that you'll miss a huge cluster of points that need to be subdivided will be approximately zero.
Now you have two problems of about 100M points each. Divide each along the longer axis. Repeat until you stop taking subsamples and split along the whole data set. After ten breadth-first iterations you'll be done.
If you have a different problem--you must provide tick marks along the X and Y axis and fill in a grid along those as best you can, rather than having the irregular decomposition of a Kd-tree--take your subsample of points and find the 0/32, 1/32, ..., 32/32 percentiles along each axis. Draw your grid lines there, then fill the resulting 1024-element grid with your points.
R-tree
Good question.
I think the area you need to investigate is "computational geometry" and the "k-partitioning" problem. There's a link that might help get you started here
You might find that the problem itself is NP-hard which means a good approximation algorithm is the best you're going to get.
Would K-means clustering or a Voronoi diagram be a good fit for the problem you are trying to solve?
That's looks like Cluster analysis.
Would a QuadTree work?
A quadtree is a tree data structure in which each internal node has exactly four children. Quadtrees are most often used to partition a two dimensional space by recursively subdividing it into four quadrants or regions. The regions may be square or rectangular, or may have arbitrary shapes. This data structure was named a quadtree by Raphael Finkel and J.L. Bentley in 1974. A similar partitioning is also known as a Q-tree. All forms of Quadtrees share some common features:
They decompose space into adaptable cells
Each cell (or bucket) has a maximum capacity. When maximum capacity is reached, the bucket splits
The tree directory follows the spatial decomposition of the Quadtree

Resources