Randomly place objects USING ALPHA MAP - random

I want to randomly place objects USING ALPHA MAP (only black color, not grayscale). The black areas on the map are using to determine where we CAN place an object.
Why do I want to do this? For example, we have some terrain with a river. We want to randomly place a chest on that terrain and the point is we want our chest NOT TO BE IN THE RIVER. We have a special location to place that chest and that location can have a very complex structure.
Simple map with lake and river:
Black/white map of the location for placing objects:
Of course, we can just take random points with Random.Range() and check each point by comparing it with pixel values: "Is the point on the black area?" BUT if we would have a very small (<10% of total area) and complex "available" area (for example, islands in the swamp) then there will be a very large amount of "garbage" points. Therefore it is very inefficient method.
Does the quick and performance technique exist to get desirable amount of "available" points?

In theory you could segment the alpha map by color to get a geometric polygonal representation of the regions, then you could generate a point algorithmically inside a set of black/white polygons.
But If you're willing to trade memory for speed, there's a much simpler solution: just represent the alpha map as two arrays(black & white) of pixels' coordinates and then randomly pick a point from a needed array.

Related

Dividing the plane into regions of equal mass based on a density function

Given a "density" scalar field in the plane, how can I divide the plane into nice (low moment of inertia) regions so that each region contains a similar amount of "mass"?
That's not the best description of what my actual problem is, but it's the most concise phrasing I could think of.
I have a large map of a fictional world for use in a game. I have a pretty good idea of approximately how far one could walk in a day from any given point on this map, and this varies greatly based on the terrain etc. I would like to represent this information by dividing the map into regions, so that one day of walking could take you from any region to any of its neighboring regions. It doesn't have to be perfect, but it should be significantly better than simply dividing the map into a hexagonal grid (which is what many games do).
I had the idea that I could create a gray-scale image with the same dimensions as the map, where each pixel's color value represents how quickly one can travel through the pixel in the same place on the map. Well-maintained roads would be encoded as white pixels, and insurmountable cliffs would be encoded as black, or something like that.
My question is this: does anyone have an idea of how to use such a gray-scale image (the "density" scalar field) to generate my "grid" from the previous paragraph (regions of similar "mass")?
I've thought about using the gray-scale image as a discrete probability distribution, from which I can generate a bunch of coordinates, and then use some sort of clustering algorithm to create the regions, but a) the clustering algorithms would have to create clusters of a similar size, I think, for that idea to work, which I don't think they usually do, and b) I barely have any idea if any of that even makes sense, as I'm way out of my comfort zone here.
Sorry if this doesn't belong here, my idea has always been to solve it programatically somehow, so this seemed the most sensible place to ask.
UPDATE: Just thought I'd share the results I've gotten so far, trying out the second approach suggested by #samgak - recursively subdividing regions into boxes of similar mass, finding the center of mass of each region, and creating a voronoi diagram from those.
I'll keep tweaking, and maybe try to find a way to make it less grid-like (like in the upper right corner), but this worked way better than I expected!
Building upon #samgak's solution, if you don't want the grid-like structure, you can just add a small random perturbation to your centers. You can see below for example the difference I obtain:
without perturbation
adding some random perturbation
A couple of rough ideas:
You might be able to repurpose a color-quantization algorithm, which partitions color-space into regions with roughly the same number of pixels in them. You would have to do some kind of funny mapping where the darker the pixel in your map, the greater the number of pixels of a color corresponding to that pixel's location you create in a temporary image. Then you quantize that image into x number of colors and use their color values as co-ordinates for the centers of the regions in your map, and you could then create a voronoi diagram from these points to define your region boundaries.
Another approach (which is similar to how some color quantization algorithms work under the hood anyway) could be to recursively subdivide regions of your map into axis-aligned boxes by taking each rectangular region and choosing the optimal splitting line (x or y) and position to create 2 smaller rectangles of similar "mass". You would end up with a power of 2 count of rectangular regions, and you could get rid of the blockiness by taking the centre of mass of each rectangle (not simply the center of the bounding box) and creating a voronoi diagram from all the centre-points. This isn't guaranteed to create regions of exactly equal mass, but they should be roughly equal. The algorithm could be improved by allowing recursive splitting along lines of arbitrary orientation (or maybe a finite number of 8, 16, 32 etc possible orientations) but of course that makes it more complicated.

Dungeon generation algorithm

I am trying to create an algorithm which would generate dungeon with following rules:
In the center is 2x2 cells starting area. Only one side is accessible to a corridor (see blue square)
Map contains two 3x3 areas. When laying out map, they act as corridors. (see green squares)
Every room is 3x2 cells rectangle.
Each room must have exactly one entry point (door) from a corridor.
If no corridors available, room's entry point can be a secret passage from neighboring room. (see red squares)
No room can have more than one secret passage.
No corridor can have width of more than one cell at any point.
No cell in the map can remain unused.
Map is a rectangle with predetermined dimensions
The last two conditions is what's giving me problems. I can't come up with an idea on how to handle it other then iterative and/or random approach, both of which are excruciatingly slow at best. What would be a good way to handle this dungeon efficiency problem in reasonable time?
Here is an example of such dungeon with map size 24x21:
For •No cell in the map can remain unused perhaps perform a post-process that converts all such into hidden rooms, with a randomly created hidden exit/entry.
For •Map is a rectangle with predetermined dimensions perhaps establish a minimum room width and upon approaching within twice the allocated limit set the width of the next room to the remaining space.
The key to many efficiency challenges in game programming is to choose suitable approximations that will be invisible (or nearly so) to the player.

Matlab - How to measure the dispersion of black in a binary image?

I am comparing RGB images of small colored granules spilled randomly on a white backdrop. My current method involves importing the image into Matlab, converting to a binary image, setting a threshold and forcing all pixels above it to white. Next, I am calculating the percentage of the pixels that are black. In comparing the images to one another, the measurement of % black pixels is great; however, it does not take into account how well the granules are dispersed. Although the % black from two different images may be identical, the images may be far from being alike. For example, assume I have two images to compare. Both show a % black pixels of 15%. In one picture, the black pixels are randomly distributed throughout the image. In the other, a clump of black pixels are in one corner and are very sparse in the rest of the image.
What can I use in Matlab to numerically quantify how "spread out" the black pixels are for the purpose of comparing the two images?
I haven't been able to wrap my brain around this one yet, and need some help. Your thoughts/answers are most appreciated.
Found an answer to a very similar problem -> https://stats.stackexchange.com/a/13274
Basically, you would use the average distance from a central point to every black pixel as a measure of dispersion.
My idea is based upon the mean free path ()used in ideal gad theory / thermodynamics)
First, you must separate your foreground objects, using something like bwconncomp.
The mean free path is calculated by the mean distance between the centers of your regions. So for n regions, you take all n/2*(n-1) pairs, calculate all the distances and average them. If the mean distance is big, your particles are well spread. If it is small, your objects are close together.
You may want to multiply the resulting mean by n and divide it by the edge length to get a dimensionless number. (Independent of your image size and independent of the number of particles)

Algorithm to Calculate Symmetry of Points

Given a set of 2D points, I want to calculate a measure of how horizontally symmetrical and vertically symmetrical those points are.
Alternatively, for each set of points I will also have a rasterised image of the lines between those points, so is there any way to calculate a measure of symmetry for images?
BTW, this is for use in a feature vector that will be presented to a neural network.
Clarification
The image on the left is 'horizontally' symmetrical. If we imagine a vertical line running down the middle of it, the left and right parts are symmetrical. Likewise, the image on the right is 'vertically' symmetrical, if you imagine a horizontal line running across its center.
What I want is a measure of just how horizontally symmetrical they are, and another of just how vertically symmetrical they are.
This is just a guideline / idea, you'll need to work out the details:
To detect symmetry with respect to horizontal reflection:
reflect the image horizontally
pad the original (unreflected) image horizontally on both sides
compute the correlation of the padded and the reflected images
The position of the maximum in the result of the correlation will give you the location of the axis of symmetry. The value of the maximum will give you a measure of the symmetry, provided you do a suitable normalization first.
This will only work if your images are "symmetric enough", and it works for images only, not sets of points. But you can create an image from a set of points too.
Leonidas J. Guibas from Stanford University talked about it in ETVC'08.
Detection of Symmetries and Repeated Patterns in 3D Point Cloud Data.

Converting vector-contoured regions (borders) to a raster map (pixel grid)

I have a map that is cut up into a number of regions by borders (contours) like countries on a world map. Each region has a certain surface-cover class S (e.g. 0 for water, 0.03 for grass...). The borders are defined by:
what value of S is on either side of it (0.03 on one side, 0.0 on the other, in the example below)
how many points the border is made of (n=7 in example below), and
n coordinate pairs (x, y).
This is one example.
0.0300 0.0000 7
2660607.5 6332685.5 2660565.0 6332690.5 2660541.5 6332794.5
2660621.7 6332860.5 2660673.8 6332770.5 2660669.0 6332709.5
2660607.5 6332685.5
I want to make a raster map in which each pixel has the value of S corresponding to the region in which the center of the pixel falls.
Note that the borders represent step changes in S. The various values of S represent discrete classes (e.g. grass or water), and are not values that can be averaged (i.e. no wet grass!).
Also note that not all borders are closed loops like the example above. This is a bit like country borders: e.g. the US-Canada border isn't a closed loop, but rather a line joining up at each end with two other borders: the Canada-ocean and the US-ocean "borders". (Closed-loop borders do exist nevertheless!)
Can anyone point me to an algorithm that can do this? I don't want to reinvent the wheel!
The general case for processing this sort of geometry in vector form can be quite difficult, especially since nothing about the structure you describe requires the geometry to be consistent. However, since you just want to rasterize it, then treating the problem as a Voronoi diagram of line segments can be more robust.
Approximating the Voronoi diagram can be done graphically in OpenGL by drawing each line segment as a pair of quads making a tent shape. The z-buffer is used to make the closest quad take precedence, and thus color the pixel based on whichever line is closest. The difference here is that you will want to color the polygons based on which side of the line they are on, instead of which line they represent. A good paper discussing a similar algorithm is Hoff et al's Fast Computation of Generalized Voronoi Diagrams Using Graphics Hardware
The 3d geometry will look something like this sketch with 3 red/yellow segments and 1 blue/green segment:
This procedure doesn't require you to convert anything into a closed loop, and doesn't require any fancy geometry libraries. Everything is handled by the z-buffer, and should be fast enough to run in real time on any modern graphics card. A refinement would be to use homogeneous coordinates to make the bases project to infinity.
I implemented this algorithm in a Python script at http://www.pasteall.org/9062/python. One interesting caveat is that using cones to cap the ends of the lines didn't work without distorting the shape of the cone, because the cones representing the end points of the segments were z-fighting. For the sample geometry you provided, the output looks like this:
I'd recommend you to use a geometry algorithm library like CGAL. Especially the second example in the "2D Polygons" page of the reference manual should provide you what you need. You can define each "border" as a polygon and check if certain points are inside the polygons. So basically it would be something like
for every y in raster grid
for every x in raster grid
for each defined polygon p
if point(x,y) is inside polygon p
pixel[X][Y] = inside_color[p]
I'm not so sure about what to do with the outside_color because the outside regions will overlap, won't they? Anyway, looking at your example, every outside region could be water, so you just could do a final
if pixel[X][Y] still undefined then pixel[X][Y] = water_value
(or as an alternative, set pixel[X][Y] to water_value before iterating through the polygon list)
first, convert all your borders into closed loops (possibly including the edges of your map), and indentify the inside colour. this has to be possible, otherwise you have an inconsistency in your data
use bresenham's algorithm to draw all the border lines on your map, in a single unused colour
store a list of all the "border pixels" as you do this
then for each border
triangulate it (delaunay)
iterate through the triangles till you find one whose centre is inside your border (point-in-polygon test)
floodfill your map at that point in the border's interior colour
once you have filled in all the interior regions, iterate through the list of border pixels, seeing which colour each one should be
choose two unused colors as markers "empty" and "border"
fill all area with "empty" color
draw all region borders by "border" color
iterate through points to find first one with "empty" color
determine which region it belongs to (google "point inside polygon", probably you will need to make your borders closed as Martin DeMello suggested)
perform flood-fill algorithm from this point with color of the region
go to next "empty" point (no need to restart search - just continue)
and so on till no "empty" points will remain
The way I've solved this is as follows:
March along each segment; stop at regular intervals L.
At each stop, place a tracer point immediately to the left and to the right of the segment (at a certain small distance d from the segment). The tracer points are attributed the left and right S-value, respectively.
Do a nearest-neighbour interpolation. Each point on the raster grid is attributed the S of the nearest tracer point.
This works even when there are non-closed lines, e.g. at the edge of the map.
This is not a "perfect" analytical algorithm. There are two parameters: L and d. The algorithm works beautifully as long as d << L. Otherwise you can get inaccuracies (usually single-pixel) near segment junctions, especially those with acute angles.

Resources