Detecting black spots on image - Image Segmentation - image

I'm trying to segment an image with Color-Based Segmentation Using K-Means Clustering. I already created 3 clusters, and the cluster number 3 is like this image:
This cluster has 3 different colors. And I want to only display the black spots of this image. How can I do that?
The image is 500x500x3 uint8.

Those "holes" look like they are well defined with the RGB values all being set to 0. To make things easy, convert the image to grayscale, then threshold the image so that any intensities less than 5 set the output to white. I use a threshold of 5 instead to ensure that we capture object pixels in their entirety taking variations into account.
Once that's done, you can use the function bwlabel from the image processing toolbox (I'm assuming you have it as you're dealing with images) where the second output tells you how many distinct white objects there are.
Something like this could work:
im = imread('http://i.stack.imgur.com/buW8C.png');
im_gray = rgb2gray(im);
holes = im_gray < 5;
[~,count] = bwlabel(holes);
I read in the image directly from StackOverflow, convert the image to grayscale, then determine a binary mask where any intensity that is less than 5, set the output to white or true. Once we have this image, we can use bwlabel's second output to determine how many objects there are.
I get this:
>> count
count =
78
As an illustration, if we show the image where the holes appear, I get this:
>> imshow(holes);
The amount of "holes" is a bit misleading though. If you specifically take a look at the bottom right of the image, there are some noisy pixels that don't belong to any of the "holes" so we should probably filter that out. As such, a simple morphological opening filter with a suitable sized structure will help remove spurious noisy islands. As such, use imopen combined with strel to define the structuring element (I'll choose a square) as well as a suitable size of the structuring element. After, use the structuring element and filter the resulting image and you can use this image to count the number of objects.
Something like this:
%// Code the same as before
im = imread('http://i.stack.imgur.com/buW8C.png');
im_gray = rgb2gray(im);
holes = im_gray < 5;
%// Further processing
se = strel('square', 5);
holes_process = imopen(holes, se);
%// Back to where we started
[~,count] = bwlabel(holes_process);
We get the following count of objects:
>> count
count =
62
This seems a bit more realistic. I get this image now instead:
>> imshow(holes_process);

Related

What's the easiest way to extract contour of segmented image?

Let's say i have an image like that one:
After some quick messing around, i got a binary image of the axe, like that:
What is the easiest/fastest way to get the contour of that image using GNU/Octave?
In Octave you can use bwboundaries (but I will welcome patches that implement bwtraceboundaries)
octave:1> pkg load image;
octave:2> bw = logical (imread ("http://i.stack.imgur.com/BoQPe.jpg"));
octave:3> boundaries = bwboundaries (bw);
octave:4> boundaries = cell2mat (boundaries);
octave:5> imshow (bw);
octave:6> hold on
octave:7> plot (boundaries(:,2), boundaries(:,1), '.g');
There are a couple of differences here from #Benoit_11 answer:
here we get the boundaries for all the objects in the image. bwboundaries will also accept coordinates as input argument to pick only a single object but I believe that work should be done by further processing your mask (may be due to the jpeg artifacts)
because we get boundaries for all objects, so you get a cell array with the coordinates. This is why we are using dots to plot the boundaries (the default is lines and it will be all over the image as it jumps from one object to other). Also, it is not documented whether the coordinates given are for the continuous boundary, so you should not assume it (again, why we plot dots).
the image that is read seems to have some artifacts, I will guess that is from saving in jpeg.
You can use bwtraceboundary in the Image package. Here is the Matlab implementation but that should be pretty similar using Octave:
First estimate starting pixel to look for boundary and then plot (BW is the image). (Check here )
dim = size(BW);
col = round(dim(2)/2)-90;
row = min(find(BW(:,col)));
boundary = bwtraceboundary(BW,[row, col],'N');
imshow(BW)
hold on;
plot(boundary(:,2),boundary(:,1),'g','LineWidth',3);
Output:

Detect black dots from color background

My short question
How to detect the black dots in the following images? (I paste only one test image to make the question look compact. More images can be found →here←).
My long question
As shown above, the background color is roughly blue, and the dots color is "black". If pick one black pixel and measure its color in RGB, the value can be (0, 44, 65) or (14, 69, 89).... Therefore, we cannot set a range to tell the pixel is part of the black dot or the background.
I test 10 images of different colors, but I hope I can find a method to detect the black dots from more complicated background which may be made up of three or more colors, as long as human eyes can identify the black dots easily. Some extremely small or blur dots can be omitted.
Previous work
Last month, I have asked a similar question at stackoverflow, but have not got a perfect solution, some excellent answers though. Find more details about my work if you are interested.
Here are the methods I have tried:
Converting to grayscale or the brightness of image. The difficulty is that I can not find an adaptive threshold to do binarization. Obviously, turning a color image to grayscale or using the brightness (HSV) will lose much useful information. Otsu algorithm which calculates adaptive threshold can not work either.
Calculating RGB histogram. In my last question, natan's method is to estimate the black color by histogram. It is time-saving, but the adaptive threshold is also a problem.
Clustering. I have tried k-means clustering and found it quite effective for the background that only has one color. The shortage (see my own answer) is I need to set the number of clustering center in advance but I don't know how the background will be. What's more, it is too slow! My application is for real time capturing on iPhone and now it can process 7~8 frames per second using k-means (20 FPS is good I think).
Summary
I think not only similar colors but also adjacent pixels should be "clustered" or "merged" in order to extract the black dots. Please guide me a proper way to solve my problem. Any advice or algorithm will be appreciated. There is no free lunch but I hope a better trade-off between cost and accuracy.
I was able to get some pretty nice first pass results by converting to HSV color space with rgb2hsv, then using the Image Processing Toolbox functions imopen and imregionalmin on the value channel:
rgb = imread('6abIc.jpg');
hsv = rgb2hsv(rgb);
openimg = imopen(hsv(:, :, 3), strel('disk', 11));
mask = imregionalmin(openimg);
imshow(rgb);
hold on;
[r, c] = find(mask);
plot(c, r, 'r.');
And the resulting images (for the image in the question and one chosen from your link):
You can see a few false positives and missed dots, as well as some dots that are labeled with multiple points, but a few refinements (such as modifying the structure element used in the opening step) could clean these up some.
I was curios to test with my old 2d peak finder code on the images without any threshold or any color considerations, really crude don't you think?
im0=imread('Snap10.jpg');
im=(abs(255-im0));
d=rgb2gray(im);
filter=fspecial('gaussian',16,3.5);
p=FastPeakFind(d,0,filter);
imagesc(im0); hold on
plot(p(1:2:end),p(2:2:end),'r.')
The code I'm using is a simple 2D local maxima finder, there are some false positives, but all in all this captures most of the points with no duplication. The filter I was using was a 2d gaussian of width and std similar to a typical blob (the best would have been to get a matched filter for your problem).
A more sophisticated version that does treat the colors (rgb2hsv?) could improve this further...
Here is an extraodinarily simplified version, that can be extended to be full RGB, and it also does not use the image procesing library. Basically you can do 2-D convolution with a filter image (which is an example of the dot you are looking for), and from the points where the convolution returns the highest values, are the best matches for the dots. You can then of course threshold that. Here is a simple binary image example of just that.
%creating a dummy image with a bunch of small white crosses
im = zeros(100,100);
numPoints = 10;
% randomly chose the location to put those crosses
points = randperm(numel(im));
% keep only certain number of points
points = points(1:numPoints);
% get the row and columns (x,y)
[xVals,yVals] = ind2sub(size(im),points);
for ii = 1:numel(points)
x = xVals(ii);
y = yVals(ii);
try
% create the crosses, try statement is here to prevent index out of bounds
% not necessarily the best practice but whatever, it is only for demonstration
im(x,y) = 1;
im(x+1,y) = 1;
im(x-1,y) = 1;
im(x,y+1) = 1;
im(x,y-1) = 1;
catch err
end
end
% display the randomly generated image
imshow(im)
% create a simple cross filter
filter = [0,1,0;1,1,1;0,1,0];
figure; imshow(filter)
% perform convolution of the random image with the cross template
result = conv2(im,filter,'same');
% get the number of white pixels in filter
filSum = sum(filter(:));
% look for all points in the convolution results that matched identically to the filter
matches = find(result == filSum);
%validate all points found
sort(matches(:)) == sort(points(:))
% get x and y coordinate matches
[xMatch,yMatch] = ind2sub(size(im),matches);
I would highly suggest looking at the conv2 documentation on MATLAB's website.

How to display a Gray scale image using boundary defined in another binary image

I have a original gray scale image(I m using mammogram image with labels outside image).
I need to remove some objects(Labels) in that image, So i converted that grayscale image to a binary image. Then i followed the answer method provided in
How to Select Object with Largest area
Finally i extracted an Object with largest area as binary image. I want that region in gray scale for accessing and segmenting small objects within that. For example. Minor tissues in region and also should detect its edge.
**
How can i get that separated object region as grayscale image or
anyway to get the largest object region from gray scale directly
without converting to binary or any other way.?
**
(I am new to matlab. I dono whether i explained it correctly or not. If u cant get, I ll provide more detail)
If I understood you correctly, you are looking to have a gray image with only the biggest blob being highlighted.
Code
img = imread(IMAGE_FILEPATH);
BW = im2bw(img,0.2); %%// 0.2 worked to get a good area for the biggest blob
%%// Biggest blob
[L, num] = bwlabel(BW);
counts = sum(bsxfun(#eq,L(:),1:num));
[~,ind] = max(counts);
BW = (L==ind);
%%// Close the biggest blob
[L,num] = bwlabel( ~BW );
counts = sum(bsxfun(#eq,L(:),1:num));
[~,ind] = max(counts);
BW = ~(L==ind);
%%// Original image with only the biggest blob highlighted
img1 = uint8(255.*bsxfun(#times,im2double(img),BW));
%%// Display input and output images
figure,
subplot(121),imshow(img)
subplot(122),imshow(img1)
Output
If I understand your question correctly, you want to use the binary map and access the corresponding pixel intensities in those regions.
If that's the case, then it's very simple. You can use the binary map to identify the spatial co-ordinates of where you want to access the intensities in the original image. Create a blank image, then copy over these intensities over to the blank image using those spatial co-ordinates.
Here's some sample code that you can play around with.
% Assumptions:
% im - Original image
% bmap - Binary image
% Where the output image will be stored
outImg = uint8(zeros(size(im)));
% Find locations in the binary image that are white
locWhite = find(bmap == 1);
% Copy over the intensity values from these locations from
% the original image to the output image.
% The output image will only contain those pixels that were white
% in the binary image
outImg(locWhite) = im(locWhite);
% Show the original and the result side by side
figure;
subplot(1,2,1);
imshow(im); title('Original Image');
subplot(1,2,2);
imshow(outImg); title('Extracted Result');
Let me know if this is what you're looking for.
Method #2
As suggested by Rafael in his comments, you can skip using find all together and use logical statements:
outImg = img;
outImg(~bmap) = 0;
I decided to use find as it less obfuscated for a beginner, even though it is less efficient to do so. Either method will give you the correct result.
Some food for thought
The extracted region that you have in your binary image has several holes. I suspect you would want to grab the entire region without any holes. As such, I would recommend that you fill in these holes before you use the above code. The imfill function from MATLAB works nicely and it accepts binary images as input.
Check out the documentation here: http://www.mathworks.com/help/images/ref/imfill.html
As such, apply imfill on your binary image first, then go ahead and use the above code to do your extraction.

changing bits per pixel in MATLAB

How does one change the bits per pixel of an image loaded into MATLAB? I use the file dialog and the imread functions to load the image into a matrix. i just need to change that image's bits per pixel. Giving the user that ability to choose anywhere from 1 bit to 8 bits. I know how to give the users the ability to choose one I just don't know who to change it. How does one change that? (By the way I'm in MATLAB R2012a)
The way I understand it, you want to do something like this:
imdata = rgb2gray(imread('ngc6543a.jpg') ); % Assuming that we have a grayscale uint8 image
figure('name', 'Before');
imagesc(imdata);
colormap('gray');
numberOfBits = input('Enter number of bits:\n');
maxValue = 2^numberOfBits - 1;
newImage = imdata * (maxValue / 256);
figure('name', 'After');
imagesc(newImage);
colormap('gray');
The image ngc6543a.jpg is a sample image, so you can run this code immediately as it is.
This documentation page contains lots of information about what you want to do: Reducing the Number of Colors in an Image.
A simple example is the following (pretty much taken straight from that page), which will dither the image and produce a colour map (slightly different to the OP's answer - not sure which one you want to do):
>> RGB = imread('peppers.png');
>> [x,map] = rgb2ind(RGB, 2); % Reduce to a 2-colour image
>> imagesc(x)
>> colormap(map)
You should choose the number of colours based on the maximum number that however many bits can hold.

Find and crop defined image areas automatically

I want to process an image in matlab
The image consists out of a solid back ground and two specimens (top and bottom side). I already have a code that separate the top and bottom and make it two images. But the part what I don't get working is to crop the image to the glued area only (red box in the image, I've only marked the top one). However, the cropped image should be a rectangle just like the red box (the yellow background, can be discarded afterwards).
I know this can be done with imcrop, but this requires manual input from the user. The code needs to be automated such that it is possible to process more images without user input. All image will have the same colors (red for glue, black for material).
Can someone help me with this?
edit: Thanks for the help. I used the following code to solve the problem. However, I couldn't get rid of the black part right of the red box. This can be fix by taping that part off before making pictures. The code which I used looks a bit weird, but it succeeds in counting the black region in the picture and getting a percentage.
a=imread('testim0.png');
level = graythresh(a);
bw2=im2bw(a, level);
rgb2=bw2rgb(bw2);
IM2 = imclearborder(rgb2,4);
pic_negative = ait_imgneg(IM2);
%% figures
% figure()
% image(rgb2)
%
% figure()
% imshow(pic_negative)
%% Counting percentage
g=0;
for j=1:size(rgb2,2)
for i=1:size(rgb2,1)
if rgb2(i,j,1) <= 0 ...
& rgb2(i,j,2) <= 0 ...
& rgb2(i,j,3) <= 0
g=g+1;
end
end
end
h=0;
for j=1:size(pic_negative,2)
for i=1:size(pic_negative,1)
if pic_negative(i,j)== 0
h=h+1;
end
end
end
per=g/(g+h)
If anyone has some suggestions to improve the code, I'm happy to hear it.
For a straight-forward image segmentation into 2 regions (background, foreground) based on color (yellow, black are prominent in your case), an option can be clustering image color values using kmeans algorithm. For additional robustness you can transform the image from RGB to Lab* colorspace.
The example for your case follows the MATLAB Imape Processing example here.
% read and transform to L*a*b space
im_rgb = double(imread('testim0.png'))./256;
im_lab = applycform(im_rgb, makecform('srgb2lab'));
% keep only a,b-channels and form feature vector
ab = double(lab_I(:,:,2:3));
[nRows, nCols, ~] = size(ab);
ab = reshape(ab,nRows * nCols,2);
% apply k-means for 2 regions, repeat c times, e.g. c = 5
nRegions = 2;
[cluster_idx cluster_center] = kmeans(ab,nRegions, 'Replicates', 5);
% get foreground-background mask
im_regions = reshape(cluster_idx, nRows, nCols);
You can use the resulting binary image to index the regions of interest (or find the boundary) in the original reference image.
Images are saved as matrices. If you know the bounds in pixels of the crop box want to crop you can execute the crop using indexing.
M = rand(100); % create a 100x100 matrix or load it from an image
left = 50;
right = 75;
top = 80;
bottom = 10;
croppedM = M(bottom:top, left:right);
%save croppedm
You can easily get the unknown bounded crop by
1) Contour plotting the image,
2) find() on the result for the max/min X/ys,
3) use #slayton's method to perform the actual crop.
EDIT: Just looked at your actual image - it won't be so easy. But color enhance/threshold your image first, and the contours should work with reasonable accuracy. Needless to say, this requires tweaking to your specific situation.
since you've already been able to seperate the top and bottom, and also able to segment the region you want (including the small part of the right side that you don't want), I propose you just add a fix at the end of the code via the following.
after segmentation, sum each column Blue intensity value, so that you are compressing the image from 2d to 1d. so if original region is width=683 height=59, the new matrix/image will be simply width=683 height=1.
now, you can apply a small threshold to determine where the edge should lie, and apply a crop to the image at that location. Now you get your stats.

Resources