Return the first and last element in the list Scheme - scheme

Pretty straightforward question. My initial approach was to define another procedure to find the last element of lst within first-last. After finding the last element I appended it with the first element of lst (car lst).
This is how append works.
(append list1 list2)
e.g., (append '(1 2 3) '(2 1 5)) -> (1 2 3 2 1 5)
I'm wondering if the problem is just with my syntax but I am not sure.
(define (first-last lst)
(define (last lst)
(cond ((null? (cdr lst))(car lst))
(else (last (cdr lst)))))
(append(car lst)(last lst)))
The error occurs in the
(append(car lst)(last lst)))
"mcar: contract violation
expected: mpair?
given: 1"
This is my first question on stack, so I'm sorry if the question is not presented in the correct way.

append is only for joining two or more lists. Here, though, you're not joining existing lists, but building a list from two elements. For that, use list:
(list (car lst) (last lst))

If you can use match, a neat solution is possible:
(define first-last
(lambda (x)
(match x
((first rest ... last)
(list first last))
((only) (list only only))
(_ #f))))
Of course, you could return something other than #f in the catch-all clause.

Related

How to define my own version of filter procedure in racket?

I am new in Racket and I was assigned to do my own filter procedure. It should work similar to the Racket filter procedure. Currently, my-filter has two arguments: the even procedure to check the items in the list, and a list of items.
So far, I have been only able to check whether the items in the list are even or not. my-filter is supposed to iterate through a list of numbers, retrieve the numbers that are even and save them in a second list. How can I iterate through the list and store the even numbers in the second list?
(define (my-filter f lst)
(if (empty? lst)
empty
(cons
(f (first lst))
(my-filter f (rest lst)))))
> (my-filter even? '(1 2 3 4 5 6))
'(#f #t #f #t #f #t)
There are three cases that you need to consider:
Input list is empty -> we're done.
Current element satisfies the predicate function -> add it to the output and continue with next element.
Current element doesn't satisfy the predicate function -> skip it and continue with next element.
You're mixing the last two cases into a single case. And notice that you must not add (f (first lst)) to the output, that's just the condition that we want to evaluate, we should add (first lst) instead. This is what I mean:
(define (my-filter f lst)
(cond ((empty? lst) empty)
((f (first lst))
(cons (first lst) (my-filter f (rest lst))))
(else (my-filter f (rest lst)))))
It works as expected:
(my-filter even? '(1 2 3 4 5 6))
=> '(2 4 6)

Can't get the end list i want in swapping procedure

Ultimately, i shall be trying to reimplement sorting algorithms in scheme for linked lists. I have written a subprocedure that will help me along the way. The goal is to simply swap 2 elements, given as arguments "pair1 and pair2" and then return the list.
(define (cons-til lst until)
(cond
((or (null? lst) (eq? (car lst) until)) '())
(else (cons (car lst) (cons-til (cdr lst) until)))))
(define (swap lst pair1 pair2)
(cons (cons (append (cons-til lst (car pair1))
(car pair2)) (car pair1)) (cdr pair2)))
(define my-list '(1 2 3 4 5 6 7))
(swap my-list (cdr (cdr my-list)) (cdr (cdr (cdr my-list))))
When the code is executed, it returns:
(((1 2 . 4) . 3) 5 6 7)
How can i fix this in order to have a plain scheme list. The element seems to have swapped correctly.
Two suggestions:
Do you really want to write n cdr calls to index the nth element? I recommend strongly using integer indexes (if you need them, that is).
Referring to elements by index in a linked list (i. e. “random access”) is not very efficient most of the time, especially when done in loops. I strongly recommend using either vectors or a better suited algorithm that doesn't need random access, e. g. merge sort.
(define (swap2 lst pair1 pair2)
(append (append (append (cons-til lst (car pair1))
(list (car pair2)))
(list (car pair1))) (cdr pair2)))
This code seems to work. I'm not sure this is completely efficient or a smart solution to the problem. Looking forward to other suggestions. The value given back is '(1 2 4 3 5 6 7)

Scheme - Using cons properly to create lists

I've been trying to solve exercise 2.20 of SICP, where "dotted-tail" notation is introduced. My problem is that, instead of returning a proper list with results, my function returns a nested list.
I know that there is something wrong with the way I'm calling cons, but I still have no clue of how to solve the issue.
So here is my function:
(define (same-parity first . items)
(define (speccar items)
(cond ((null? items) 2)
((not (pair? items)) (modulo items 2))
(else (modulo (car items) 2))))
(define (iter-parity first items result)
(let ((parityFirst (modulo first 2)) (samepar (speccar items)))
(if (null? items)
result
(if (= parityFirst samepar)
;; This next line is where the problem is...
(iter-parity first (cdr items) (cons (list result) (list (car items))))
(iter-parity first (cdr items) result)))))
(iter-parity first items first))
Test:
(same-parity 1 2 3 4 5)
((((1) 3)) 5)
Now, I've read the following answers that deal with a similar problem:
Cons element to list vs cons list to element in Scheme
How to use 'cons' without generating nested lists in Scheme?
They certainly make it clear where the problem is coming from, but how does one go about to actually implement a proper solution?
And, if possible, what is the correct way of "thinking" in Scheme to avoid these traps/pitfalls?
You're incorrectly building the output list - remember: the first argument to cons should be the current element and the second argument, the result list.
Also, given that you're using tail recursion, you'll have to reverse the output at the end to preserve the same order as in the original list. Try this:
(define (same-parity first . items)
(define (speccar items)
(cond ((null? items) 2)
((not (pair? items)) (modulo items 2))
(else (modulo (car items) 2))))
(define (iter-parity first items result)
(let ((parityFirst (modulo first 2))
(samepar (speccar items)))
(if (null? items)
(reverse result)
(if (= parityFirst samepar)
(iter-parity first
(cdr items)
(cons (car items) result))
(iter-parity first
(cdr items)
result)))))
(iter-parity first items (list first)))
The above solution can be greatly simplified if we use built-in procedures (don't reinvent the wheel!). This is the recommended way to write programs in Scheme - adhering to a functional style:
(define (same-parity head . tail)
(if (even? head)
(filter even? (cons head tail))
(filter odd? (cons head tail))))
Either way, it works as expected:
(same-parity 1 2 3 4 5)
=> '(1 3 5)

delete-doubles function (scheme)

(define (delete-doubles lst)
(cond ((null? lst) '())
((null? (cdr lst)) (car lst))
((equal? (car lst) (cadr lst)) (delete-doubles (cdr lst)))
(else (cons (car lst) (delete-doubles (cdr lst))))))
This is the code I made. It is meant for deleting an element in a list when this element shows up two or more times after each other. The code works totally fine, apart from this:
> (delete-doubles '(1 2 2 3 4 5))
(1 2 3 4 . 5)
I'd like to remove the . , and I know it has something to do with the cons, but I don't know how to solve it.
Thanks in advance.
'(1 2 3) really means (cons 1 (cons 2 (cons 3 null)))
'(1 2 . 3) really means (cons 1 (cons 2 3)
A couple of good test cases should reveal the problem quickly. In general, you should start with the absolute smallest test case you can think of. Then the next smallest. Then go up from there. Don't jump straight to a big example.
when the cdr is null you are just returning the car, and in the else line you are doing cons on car and recursion on cdr. So that is where your pair is coming from. Does that help?
I ran your code unchanged and got this:
> (delete-doubles '(1))
1
The intended output is (1).
This implies that you are returning the wrong value in
the list-is-one-element-long-clause.
If the list has one element, then it is already without doubles.
That is, you must return lst and not (car lst) in this case.

removing last element of a list(scheme)

So I have to remove the last element of a list in scheme.
For example, let's say I have a list (1 2 3 4). I need to return:
(1 2 3)
My idea:
reverse(list)
car(list)
reverse(list)
Is there a reverse function in scheme(racket)?
You wrote: "reverse, car, reverse". I believe you meant to write "reverse, cdr, reverse". There's nothing wrong with this solution; it's linear in the size of the list, just like any solution to this that uses the standard lists.
As code:
;; all-but-last: return the list, not including the last element
;; list? -> list?
(define (all-but-last l) (reverse (cdr (reverse l))))
If the multiple traversal of the list or the needless construction of another list copy bothers you, you can certainly avoid it, by writing the thing directly.
Given your almost-solution, I'm going to assume that this isn't homework.
Here's what it would look like, in racket:
#lang racket
(require rackunit)
;; all-but-last : return the list, except for the last element
;; non-empty-list? -> list?
(define (all-but-last l)
(cond [(empty? l) (error 'all-but-last "empty list")]
[(empty? (rest l)) empty]
[else (cons (first l) (all-but-last (rest l)))]))
(check-equal? (all-but-last '(3 4 5))
'(3 4))
There is a reverse, but using it would not be very efficient. I suggest the following recursive function.
(define (remove-last lst)
(if (null? (cdr lst))
'()
(cons (car lst) (remove-last (cdr lst)))))
(remove-last '(1 2 3 4)) ; returns '(1 2 3)
The if checks whether it is at the last element of the list.
SRFI 1 (activate in Racket using (require srfi/1)) has a drop-right function:
(drop-right '(1 2 3 4) 1) ; => (1 2 3)
I would do a recursive function that goes down the list and attaches the element (using cons) if the element after it is not the last, and appends nothing if it isn't.
I haven't done scheme for years though so that's as far as I can go.
Someone can run with how to implement it (unless it's homework then they probably shouldn't!)
I've done something simpler than: reverse(list), car(list), reverse(list) to get the last element, check out:
(define (last-one liste)
(if(null? (cdr liste))
null
(cons (car liste) (last-one (cdr liste)))
)
)
Those who are looking for another way can check this out:
(define (removing-last xx)
(remove (list-ref xx (- (length xx) 1)) xx))
I would write a simple recursion, altering the typical "empty? mylist" base case to "empty? (rest mylist)," so that I can return empty when the input list is only 1 element.
(define (removelast mylist)
(cond
[(empty? (rest mylist)) empty]
[(cons? mylist) (cons (first mylist) (removelast (rest mylist)))]))
(removelast (list 1 2 3 4 5))
By the way, this code is in Racket/PLT Scheme, a subset of Scheme.

Resources