Can't get the end list i want in swapping procedure - sorting

Ultimately, i shall be trying to reimplement sorting algorithms in scheme for linked lists. I have written a subprocedure that will help me along the way. The goal is to simply swap 2 elements, given as arguments "pair1 and pair2" and then return the list.
(define (cons-til lst until)
(cond
((or (null? lst) (eq? (car lst) until)) '())
(else (cons (car lst) (cons-til (cdr lst) until)))))
(define (swap lst pair1 pair2)
(cons (cons (append (cons-til lst (car pair1))
(car pair2)) (car pair1)) (cdr pair2)))
(define my-list '(1 2 3 4 5 6 7))
(swap my-list (cdr (cdr my-list)) (cdr (cdr (cdr my-list))))
When the code is executed, it returns:
(((1 2 . 4) . 3) 5 6 7)
How can i fix this in order to have a plain scheme list. The element seems to have swapped correctly.

Two suggestions:
Do you really want to write n cdr calls to index the nth element? I recommend strongly using integer indexes (if you need them, that is).
Referring to elements by index in a linked list (i. e. “random access”) is not very efficient most of the time, especially when done in loops. I strongly recommend using either vectors or a better suited algorithm that doesn't need random access, e. g. merge sort.

(define (swap2 lst pair1 pair2)
(append (append (append (cons-til lst (car pair1))
(list (car pair2)))
(list (car pair1))) (cdr pair2)))
This code seems to work. I'm not sure this is completely efficient or a smart solution to the problem. Looking forward to other suggestions. The value given back is '(1 2 4 3 5 6 7)

Related

Return the first and last element in the list Scheme

Pretty straightforward question. My initial approach was to define another procedure to find the last element of lst within first-last. After finding the last element I appended it with the first element of lst (car lst).
This is how append works.
(append list1 list2)
e.g., (append '(1 2 3) '(2 1 5)) -> (1 2 3 2 1 5)
I'm wondering if the problem is just with my syntax but I am not sure.
(define (first-last lst)
(define (last lst)
(cond ((null? (cdr lst))(car lst))
(else (last (cdr lst)))))
(append(car lst)(last lst)))
The error occurs in the
(append(car lst)(last lst)))
"mcar: contract violation
expected: mpair?
given: 1"
This is my first question on stack, so I'm sorry if the question is not presented in the correct way.
append is only for joining two or more lists. Here, though, you're not joining existing lists, but building a list from two elements. For that, use list:
(list (car lst) (last lst))
If you can use match, a neat solution is possible:
(define first-last
(lambda (x)
(match x
((first rest ... last)
(list first last))
((only) (list only only))
(_ #f))))
Of course, you could return something other than #f in the catch-all clause.

Converting a list to a circular list in Chicken scheme?

In trying to find how to convert such a list, I came across
Scheme streams and circular lists. However, that answer requires features in Racket not available in Chicken scheme. Can Anyone point Me in the direction of how to do this in Chicken scheme instead? Or in a scheme-variant-neutral fashion?
If you can mutate the list, here's a standard way:
(define (make-circular lst)
; helper for finding the last pair in a list
(define (last-pair lst)
(if (null? (cdr lst))
lst
(last-pair (cdr lst))))
; special case: if the list is empty
(cond ((null? lst) '())
(else
; set the last pair to point to the head of the list
(set-cdr! (last-pair lst) lst)
lst)))
Be aware that the above will modify the input list. Other than that, it works as expected:
(make-circular '(1 2 3 4 5))
=> #0=(1 2 3 4 5 . #0#)
(car (cdr (cdr (cdr (cdr (cdr (make-circular '(1 2 3 4 5))))))))
=> 1
It is pretty simple when you use SRFIs:
(use srfi-1)
(define l '(1 2 3 4))
(apply circular-list l)

delete-doubles function (scheme)

(define (delete-doubles lst)
(cond ((null? lst) '())
((null? (cdr lst)) (car lst))
((equal? (car lst) (cadr lst)) (delete-doubles (cdr lst)))
(else (cons (car lst) (delete-doubles (cdr lst))))))
This is the code I made. It is meant for deleting an element in a list when this element shows up two or more times after each other. The code works totally fine, apart from this:
> (delete-doubles '(1 2 2 3 4 5))
(1 2 3 4 . 5)
I'd like to remove the . , and I know it has something to do with the cons, but I don't know how to solve it.
Thanks in advance.
'(1 2 3) really means (cons 1 (cons 2 (cons 3 null)))
'(1 2 . 3) really means (cons 1 (cons 2 3)
A couple of good test cases should reveal the problem quickly. In general, you should start with the absolute smallest test case you can think of. Then the next smallest. Then go up from there. Don't jump straight to a big example.
when the cdr is null you are just returning the car, and in the else line you are doing cons on car and recursion on cdr. So that is where your pair is coming from. Does that help?
I ran your code unchanged and got this:
> (delete-doubles '(1))
1
The intended output is (1).
This implies that you are returning the wrong value in
the list-is-one-element-long-clause.
If the list has one element, then it is already without doubles.
That is, you must return lst and not (car lst) in this case.

removing last element of a list(scheme)

So I have to remove the last element of a list in scheme.
For example, let's say I have a list (1 2 3 4). I need to return:
(1 2 3)
My idea:
reverse(list)
car(list)
reverse(list)
Is there a reverse function in scheme(racket)?
You wrote: "reverse, car, reverse". I believe you meant to write "reverse, cdr, reverse". There's nothing wrong with this solution; it's linear in the size of the list, just like any solution to this that uses the standard lists.
As code:
;; all-but-last: return the list, not including the last element
;; list? -> list?
(define (all-but-last l) (reverse (cdr (reverse l))))
If the multiple traversal of the list or the needless construction of another list copy bothers you, you can certainly avoid it, by writing the thing directly.
Given your almost-solution, I'm going to assume that this isn't homework.
Here's what it would look like, in racket:
#lang racket
(require rackunit)
;; all-but-last : return the list, except for the last element
;; non-empty-list? -> list?
(define (all-but-last l)
(cond [(empty? l) (error 'all-but-last "empty list")]
[(empty? (rest l)) empty]
[else (cons (first l) (all-but-last (rest l)))]))
(check-equal? (all-but-last '(3 4 5))
'(3 4))
There is a reverse, but using it would not be very efficient. I suggest the following recursive function.
(define (remove-last lst)
(if (null? (cdr lst))
'()
(cons (car lst) (remove-last (cdr lst)))))
(remove-last '(1 2 3 4)) ; returns '(1 2 3)
The if checks whether it is at the last element of the list.
SRFI 1 (activate in Racket using (require srfi/1)) has a drop-right function:
(drop-right '(1 2 3 4) 1) ; => (1 2 3)
I would do a recursive function that goes down the list and attaches the element (using cons) if the element after it is not the last, and appends nothing if it isn't.
I haven't done scheme for years though so that's as far as I can go.
Someone can run with how to implement it (unless it's homework then they probably shouldn't!)
I've done something simpler than: reverse(list), car(list), reverse(list) to get the last element, check out:
(define (last-one liste)
(if(null? (cdr liste))
null
(cons (car liste) (last-one (cdr liste)))
)
)
Those who are looking for another way can check this out:
(define (removing-last xx)
(remove (list-ref xx (- (length xx) 1)) xx))
I would write a simple recursion, altering the typical "empty? mylist" base case to "empty? (rest mylist)," so that I can return empty when the input list is only 1 element.
(define (removelast mylist)
(cond
[(empty? (rest mylist)) empty]
[(cons? mylist) (cons (first mylist) (removelast (rest mylist)))]))
(removelast (list 1 2 3 4 5))
By the way, this code is in Racket/PLT Scheme, a subset of Scheme.

Finding the overall average of nested lists in Scheme?

Hey guys, I'm using MIT Scheme and trying to write a procedure to find the average of all the numbers in a bunch of nested lists, for example:
(average-lists (list 1 2 (list 3 (list 4 5)) 6)))
Should return 3.5. I've played with the following code for days, and right now I've got it returning the sum, but not the average. Also, it is important that the values of the inner-most lists are calculated first, so no extracting all values and simply averaging them.
Here's what I have so far:
(define (average-lists data)
(if (null? data)
0.0
(if (list? (car data))
(+ (average-lists (car data)) (average-lists (cdr data)))
(+ (car data) (average-lists (cdr data))))))
I've tried this approach, as well as trying to use map to map a lambda function to it recursively, and a few others, but I just can't find one. I think I'm making thing harder than it should be.
I wrote the following in an effort to pursue some other paths as well, which you may find useful:
(define (list-num? x) ;Checks to see if list only contains numbers
(= (length (filter number? x)) (length x)))
(define (list-avg x) ;Returns the average of a list of numbers
(/ (accumulate + 0 x) (length x)))
Your help is really appreciated! This problem has been a nightmare for me. :)
Unless the parameters require otherwise, you'll want to define a helper procedure that can calculate both the sum and the count of how many items are in each list. Once you can average a single list, it's easy to adapt it to nested lists by checking to see if the car is a list.
This method will get you the average in one pass over the list, rather than the two or more passes that solutions that flatten the list or do the count and the sums in two separate passes. You would have to get the sum and counts separately from the sublists to get the overall average, though (re. zinglon's comment below).
Edit:
One way to get both the sum and the count back is to pass it back in a pair:
(define sum-and-count ; returns (sum . count)
(lambda (ls)
(if (null? ls)
(cons 0 0)
(let ((r (sum-and-count (cdr ls))))
(cons (+ (car ls) (car r))
(add1 (cdr r)))))))
That procedure gets the sum and number of elements of a list. Do what you did to your own average-lists to it to get it to examine deeply-nested lists. Then you can get the average by doing (/ (car result) (cdr result)).
Or, you can write separate deep-sum and deep-count procedures, and then do (/ (deep-sum ls) (deep-count ls)), but that requires two passes over the list.
(define (flatten mylist)
(cond ((null? mylist) '())
((list? (car mylist)) (append (flatten (car mylist)) (flatten (cdr mylist))))
(else (cons (car mylist) (flatten (cdr mylist))))))
(define (myavg mylist)
(let ((flatlist (flatten mylist)))
(/ (apply + flatlist) (length flatlist))))
The first function flattens the list. That is, it converts '(1 2 (3 (4 5)) 6) to '(1 2 3 4 5 6)
Then its just a matter of applying + to the flat list and doing the average.
Reference for the first function:
http://www.dreamincode.net/code/snippet3229.htm

Resources