How do RethinkDB, Laravel, and Ratchet work together? - laravel-5

Situation
Am trying to build a real-time chat toy app using the following technology stack
RethinkDB
Laravel 5
Ratchet
What I perceive to be the conceptual situation
The green arrows represent the real-time exchange of data.
The black arrows represent other non real-time requests and exchange of data.
My question
I was wondering if my understanding of the implementation of chat using the technology stack is correct based on the diagram?
if there are inaccuracies, what would they be?

Your interpretation seems correct, although I would not suggest using the websocket to send data to but only to distribute live data to all subscribers of a channel.
To do this, get an API(preferably) going to receive new posts/chats/users.
And use a push server to send the data received to the socket.
A push server is just an in between of the app and websocket that allows php(laravel) to access the socket easily.
Edit: to elaborate
To retry explaining this to you.
All clients listen to the WebScoket Server. This is a connection which is passive and they will only receive messages from the socket according to what topics/subscriptions they have.
When someone wants to send a message(in case of a chat application) they send it to an API to check if the right user sent it, maybe even use apikeys or other means of security.
Once the message is received in the API then the API wants to distribite it to all listening clients for that chat room/topic/subscription.
So the message is forwarded to the pushserver which is an in between of the backend (API, controllers) and the WebSocket (subscriptions, topics).
The pushserver forwards the message to the WebSocket afterwards and then the WebSocket distibutes the message to the correct listeners.
Advantages of using an API:
Security
Scalability

Related

Are WebSockets suitable for push notifications?

I want to implement a notification to the post author as soon as there is a comment on the post. In other words, when a request to write a comment comes to the server, the server wants to send a notification to the author in real time. Of course, I also want to give the commenter a push notification when the author of the post has commented on a comment.
The server is implemented with Spring Boot, and I am considering websockets to send push notifications from server to client. However, before I try, I have a few concerns and ask a question.
As I understand it, websockets is a web protocol that enables two-way communication between a server and a client over a single TCP connection. In other words, in order to implement a push notification that a comment has been made to a mobile app, I think that a TCP connection must be maintained at all times. I am wondering if it is possible to send push notifications using websockets from server to client even when the client app is in background state or is off. My guess is that if the TCP connection goes down, The app won't get push notifications.
I think WebSocket is suitable for full-duplex two-way communication such as chatting, but wouldn't it be expensive to implement a websocket that occasionally sends push notifications from the server to the client?
The function I want to create is a function that notifies only the author of a specific post with a comment when a comment is posted. Is it appropriate for websocket to implement a function that notifies only a specific user?
I just know that websocket is one of the methods for sending data from server to client, and I tried to use websocket for push notification, but I don't know if it's the right way to go.

How to use Pusher API for bi-directional communication?

When taking a look at the Pusher Servcer and their Client / Server API I am having some problems trying to figure out how Pusher will help me allow bi-directional communication between devices / apps.
I am having multiple smaller devices / apps in the field that should return their status to a server or another client, which acts as a dashboard to browse all those devices and monitor status, etc.
In my understanding this can be done using traditional WebSockets and a cloud-server in between which manages all connections between those clients - something I though Pusher would be.
But after reading through the docs I can't really see a concept of bi-directional data communication. Here's why:
To push data to the clients I have to use one of Pushers Server Libraries
To receive that Data I have to use one of Pusher Client Libraries
This concept however does not fit into what I need. I want to:
Broadcast to Clients.
Clients can send Data directly to Clients (Server acting as Gateway / Routing).
Clients can send Data to Server.
Server can send / response to unique Client.
When reading about Pusher, they state: "Bi-Directional Communication" which I currently cannot see. So how to implement that advertised Bi-Directional Communication?
Pusher does PubSub only. Using this, you can simulate bi-directional communication: Both sides of the conversation each need to have a topic dedicated to the conversation, and you then publish to this.
This is not ideal. For something which is probably closer to what you seem to want, take a look at WAMP (Web Application Messaging Protocol), which has more than just PubSub. There is a list of implementations at http://wamp-proto.org/implementations. For a router I would recommend Crossbar.io (http://crossbar.io), which has the most documentation to help you get started. Full disclosure: I am involved both with WAMP and Crossbar.io - but it's all open source and may just be what you need.

Moving from socket.io to raw websockets?

Right now I'm using socket.io with mandatory websockets as the transport. I'm thinking about moving to raw websockets but I'm not clear on what functionality I will lose moving off of socket.io. Thanks for any guidance.
The socket.io library adds the following features beyond standard webSockets:
Automatic selection of long polling vs. webSocket if the browser does not support webSockets or if the network path has a proxy/firewall that blocks webSockets.
Automatic client reconnection if the connection goes down (even if the server restarts).
Automatic detection of a dead connection (by using regular pings to detect a non-functioning connection)
Message passing scheme with automatic conversion to/from JSON.
The server-side concept of rooms where it's easy to communicate with a group of connected users.
The notion of connecting to a namespace on the server rather than just connecting to the server. This can be used for a variety of different capabilities, but I use it to tell the server what types of information I want to subscribe to. It's like connection to a particular channel.
Server-side data structures that automatically keep track of all connected clients so you can enumerate them at any time.
Middleware architecture built-in to the socket.io library that can be used to implement things like authentication with access to cookies from the original connection.
Automatic storage of the cookies and other headers present on the connection when it was first connected (very useful for identifying what user is connected).
Server-side broadcast capabilities to send a common message to either to all connected clients, all clients in a room or all clients in a namespace.
Tagging of every message with a message name and routing of message names into an eventEmitter so you listen for incoming messages by listening on an eventEmitter for the desired message name.
The ability for either client or server to send a message and then wait for a response to that specific message (a reply feature or request/response model).

The theory of websockets with API

I have an API running on a server, which handle users connection and a messaging system.
Beside that, I launched a websocket on that same server, waiting for connections and stuff.
And let's say we can get access to this by an Android app.
I'm having troubles to figure out what I should do now, here are my thoughts:
1 - When a user connect to the app, the API connect to the websocket. We allow the Android app only to listen on this socket to get new messages. When the user want to answer, the Android app send a message to the API. The API writes itself the received message to the socket, which will be read back by the Android app used by another user.
This way, the API can store the message in database before writing it in the socket.
2- The API does not connect to the websocket in any way. The Android app listen and write to the websocket when needed, and should, when writing to the websocket, also send a request to the API so it can store the message in DB.
May be none of the above is correct, please let me know
EDIT
I already understood why I should use a websocket, seems like it's the best way to have this "real time" system (when getting a new message for example) instead of forcing the client to make an HTTP request every x seconds to check if there are new messages.
What I still don't understand, is how it is suppose to communicate with my database. Sorry if my example is not clear, but I'll try to keep going with it :
My messaging system need to store all messages in my API database, to have some kind of historic of the conversation.
But it seems like a websocket must be running separately from the API, I mean it's another program right? Because it's not for HTTP requests
So should the API also listen to this websocket to catch new messages and store them?
You really have not described what the requirements are for your application so it's hard for us to directly advise what your app should do. You really shouldn't start out your analysis by saying that you have a webSocket and you're trying to figure out what to do with it. Instead, lay out the requirements of your app and figure out what technology will best meet those requirements.
Since your requirements are not clear, I'll talk about what a webSocket is best used for and what more traditional http requests are best used for.
Here are some characteristics of a webSocket:
It's designed to be continuously connected over some longer duration of time (much longer than the duration of one exchange between client and server).
The connection is typically made from a client to a server.
Once the connection is established, then data can be sent in either direction from client to server or from server to client at any time. This is a huge difference from a typical http request where data can only be requested by the client - with an http request the server can not initiate the sending of data to the client.
A webSocket is not a request/response architecture by default. In fact to make it work like request/response requires building a layer on top of the webSocket protocol so you can tell which response goes with which request. http is natively request/response.
Because a webSocket is designed to be continuously connected (or at least connected for some duration of time), it works very well (and with lower overhead) for situations where there is frequent communication between the two endpoints. The connection is already established and data can just be sent without any connection establishment overhead. In addition, the overhead per message is typically smaller with a webSocket than with http.
So, here are a couple typical reasons why you might choose one over the other.
If you need to be able to send data from server to client without having the client regular poll for new data, then a webSocket is very well designed for that and http cannot do that.
If you are frequently sending lots of small bits of data (for example, a temperature probe sending the current temperature every 10 seconds), then a webSocket will incur less network and server overhead than initiating a new http request for every new piece of data.
If you don't have either of the above situations, then you may not have any real need for a webSocket and an http request/response model may just be simpler.
If you really need request/response where a specific response is tied to a specific request, then that is built into http and is not a built-in feature of webSockets.
You may also find these other posts useful:
What are the pitfalls of using Websockets in place of RESTful HTTP?
What's the difference between WebSocket and plain socket communication?
Push notification | is websocket mandatory?
How does WebSockets server architecture work?
Response to Your Edit
But it seems like a websocket must be running separately from the API,
I mean it's another program right? Because it's not for HTTP requests
The same process that supports your API can also be serving the webSocket connections. Thus, when you get incoming data on the webSocket, you can just write it directly to the database the same way the API would access the database. So, NO the webSocket server does not have to be a separate program or process.
So should the API also listen to this websocket to catch new messages
and store them?
No, I don't think so. Only one process can be listening to a set of incoming webSocket connections.

How would I create an asynchronous notification system using RESTful web services?

I have a Java application which I make available via RESTful web services. I want to create a mechanism so clients can register for notifications of events. The rub is that there is no guarantee that the client programs will be Java programs and hence I won't be able to use JMS for this (i.e. if every client was a Java app then we could allow the clients to subscribe to a JMS topic and listen there for notification messages).
The use case is roughly as follows:
A client registers itself with my server application, via a RESTful web service call, indicating that it is interested in getting a notification message anytime a specific object is updated.
When the object of interest is updated then my server application needs to put out a notification to all clients who are interested in being notified of this event.
As I mentioned above I know how I would do this if all clients were Java apps -- set up a topic that clients can listen to for notification messages. However I can't use that approach since it's likely that many clients will not be able to listen to a JMS topic for notification messages.
Can anyone here enlighten me as to how this problem is typically solved? What mechanism can I provide using a RESTful API?
I can think of four approaches:
A Twitter approach: You register the Client and then it calls back periodically with a GET to retrieve any notifications.
The Client describes how it wants to receive the notification when it makes the registration request. That way you could allow JMS for those that can handle it and fall back to email or similar for those that can't.
Take a URL during the registration request and POST back to each Client individually when you have a notification. Hardly Pub/Sub but the effect would be similar. Of course you'd be assuming that the Client was listening for these notifications and had implemented their Client according to your specs.
Buy IBM WebSphere MQ (MQSeries). Best IBM product ever. Not REST but it's great at multi-platform integration like this.
We have this problem and need low-latency asynchronous updates to relatively few listeners. Our two alternative solutions have been:
Polling: Hammer the list of resources you need with GET requests
Streaming event updates: Provide a monitor resource. The server keeps the connection open. As events occur, the server transmits a stream of event descriptions using multipart content-type or chunked transfer-encoding.
In the response to the RESTful request, you could supply an individualized RESTful URL that the client can monitor for updates.
That is, you have one URL (/Signup.htm, say), that accepts the client's information (id if appropriate, id of object to monitor) and returns a customized url (/Monitor/XYZPDQ), where XYZPDQ is a UUID created for that particular client. The client can poll that customized URL at some interval, and it will receive a notification if the update occurs.
If you don't care about who the client is (and don't want to create so many UUIDs) you could just have separate RESTful URLs for each object that might want to be monitored, and the "signup" URL would just return the correct one.
As John Saunders says, you can't really do a more straightforward publish/subscribe via HTTP.
If polling is not acceptable I would consider using web-sockets (e.g. see here). Though to be honest I like the idea suggested by user189423 of multipart content-type or chunked transfer-encoding as well.

Resources