When taking a look at the Pusher Servcer and their Client / Server API I am having some problems trying to figure out how Pusher will help me allow bi-directional communication between devices / apps.
I am having multiple smaller devices / apps in the field that should return their status to a server or another client, which acts as a dashboard to browse all those devices and monitor status, etc.
In my understanding this can be done using traditional WebSockets and a cloud-server in between which manages all connections between those clients - something I though Pusher would be.
But after reading through the docs I can't really see a concept of bi-directional data communication. Here's why:
To push data to the clients I have to use one of Pushers Server Libraries
To receive that Data I have to use one of Pusher Client Libraries
This concept however does not fit into what I need. I want to:
Broadcast to Clients.
Clients can send Data directly to Clients (Server acting as Gateway / Routing).
Clients can send Data to Server.
Server can send / response to unique Client.
When reading about Pusher, they state: "Bi-Directional Communication" which I currently cannot see. So how to implement that advertised Bi-Directional Communication?
Pusher does PubSub only. Using this, you can simulate bi-directional communication: Both sides of the conversation each need to have a topic dedicated to the conversation, and you then publish to this.
This is not ideal. For something which is probably closer to what you seem to want, take a look at WAMP (Web Application Messaging Protocol), which has more than just PubSub. There is a list of implementations at http://wamp-proto.org/implementations. For a router I would recommend Crossbar.io (http://crossbar.io), which has the most documentation to help you get started. Full disclosure: I am involved both with WAMP and Crossbar.io - but it's all open source and may just be what you need.
Related
Whereas the corporate environment I am working in accepts the use of http(s) based request response patterns, which is OK for GraphQL Query and Mutation, they have issues with the use of websockets as needed for GraphQL Subscription and would prefer that the subscription is routed via IBM MQ.
Does anyone have any experience with this? I am thinking of using Apollo Server to serve up the GraphQL interface. Perhaps there is a front-end subscription solution that can be plugged in using IBM MQ? The back end data sources are Oracle databases.
Message queues are usually used to communicate between services while web sockets are how browsers can communicate with the server over a constant socket. This allows the server to send data to the client when a new event of a subscription arrived (classically browsers only supported "pull" and could only receive data when they asked for it). Browsers don't implement the MQ protocols you would need to directly subscribe to the MQ itself. I am not an expert on MQs but what is usually done is there is a subscription server that connects to the client via web socket. The subscription service then itself subscribes to the message queue and notifies relevant clients about their subscribed events. You can easily scale the subscription servers horizontally when you need additional resources.
I am working on a project which is basically a Customer Feedback Analysis Dashboard. There are few graphs on the dashboard and data for each graph is fetched from the server through API requests.
Right now the dashboard is updated every time the page is refreshed. I want it to be updated immediately when there is a new feedback in the system. I am confused, whether I use websockets to send data for each graph or just a flag and use that flag to fetch data through API requests.
Like, facebook/twitter does. They tell you about new posts/tweets and when you click that button your feed/wall gets updated.
If you want to "push" data from server to client and you want that data to show up in a timely fashion (e.g. within 10-20 seconds of when it was available on the server), then you will want to implement some sort of "push" solution where the server can efficiently push data to the client whenever there is new data to send.
There are several possible approaches:
webSockets
socket.io
Server-sent events
Mobile platform-specific push (Android and iOS)
For a general purpose solution that works within a browser, you will want to use one of the first three. socket.io is built on top of webSockets (it just adds more features) so architecturally, they are similar.
Server-sent events are fairly new (modern browsers only) and are only for one way communication (from server to client). webSockets can be used for communication either way.
I'd personally recommend socket.io because of the features it offers (such as automatic client reconnection) and a simplified messaging layer. You can see the feature difference between socket.io and webSockets here. With socket.io, the client makes a connection to the server when the web page is loaded and that connection is persistent. After the connection is established, then either client or server can send messages to the other at any time in a very efficient manner.
Other useful references:
Push notification | is websocket mandatory?
websocket vs rest API for real time data?
Why to use websocket and what is the advantage of using it?
What are the pitfalls of using Websockets in place of RESTful HTTP?
Ajax vs Socket.io
Right now I'm using socket.io with mandatory websockets as the transport. I'm thinking about moving to raw websockets but I'm not clear on what functionality I will lose moving off of socket.io. Thanks for any guidance.
The socket.io library adds the following features beyond standard webSockets:
Automatic selection of long polling vs. webSocket if the browser does not support webSockets or if the network path has a proxy/firewall that blocks webSockets.
Automatic client reconnection if the connection goes down (even if the server restarts).
Automatic detection of a dead connection (by using regular pings to detect a non-functioning connection)
Message passing scheme with automatic conversion to/from JSON.
The server-side concept of rooms where it's easy to communicate with a group of connected users.
The notion of connecting to a namespace on the server rather than just connecting to the server. This can be used for a variety of different capabilities, but I use it to tell the server what types of information I want to subscribe to. It's like connection to a particular channel.
Server-side data structures that automatically keep track of all connected clients so you can enumerate them at any time.
Middleware architecture built-in to the socket.io library that can be used to implement things like authentication with access to cookies from the original connection.
Automatic storage of the cookies and other headers present on the connection when it was first connected (very useful for identifying what user is connected).
Server-side broadcast capabilities to send a common message to either to all connected clients, all clients in a room or all clients in a namespace.
Tagging of every message with a message name and routing of message names into an eventEmitter so you listen for incoming messages by listening on an eventEmitter for the desired message name.
The ability for either client or server to send a message and then wait for a response to that specific message (a reply feature or request/response model).
Situation
Am trying to build a real-time chat toy app using the following technology stack
RethinkDB
Laravel 5
Ratchet
What I perceive to be the conceptual situation
The green arrows represent the real-time exchange of data.
The black arrows represent other non real-time requests and exchange of data.
My question
I was wondering if my understanding of the implementation of chat using the technology stack is correct based on the diagram?
if there are inaccuracies, what would they be?
Your interpretation seems correct, although I would not suggest using the websocket to send data to but only to distribute live data to all subscribers of a channel.
To do this, get an API(preferably) going to receive new posts/chats/users.
And use a push server to send the data received to the socket.
A push server is just an in between of the app and websocket that allows php(laravel) to access the socket easily.
Edit: to elaborate
To retry explaining this to you.
All clients listen to the WebScoket Server. This is a connection which is passive and they will only receive messages from the socket according to what topics/subscriptions they have.
When someone wants to send a message(in case of a chat application) they send it to an API to check if the right user sent it, maybe even use apikeys or other means of security.
Once the message is received in the API then the API wants to distribite it to all listening clients for that chat room/topic/subscription.
So the message is forwarded to the pushserver which is an in between of the backend (API, controllers) and the WebSocket (subscriptions, topics).
The pushserver forwards the message to the WebSocket afterwards and then the WebSocket distibutes the message to the correct listeners.
Advantages of using an API:
Security
Scalability
I am new to Websockets. While reading about websockets, I am not been able to find answers to some of my doubts. I would like if someone clarifies it.
Does websocket only broadcasts the data to all clients connected instead of sending to a particular client? Whatever example (mainly chat apps) I tried they sends data to all the clients. Is it possible to alter this?
How it works on clients located on NAT (behind router).
Since client server connection will always remain open, how will it affect server performance for large number of connections?
Since I want all my clients to get real time updates, it is required to connect all my clients to server, so how should I handele the client connection limit?
NOTE:- My client is not a Web browser but a desktop application.
No, websocket is not only for broadcasting. You send messages to specific clients, when you broadcast you just send the same message to all connected clients, but you can send different messages to different clients, for example a game session.
The clients connect to the server and initialise the connections, so NAT is not a problem.
It's good to use a scalable server, e.g. an event driven server (e.g. Node.js) that doesn't use a seperate thread for each connection, or an erlang server with lightweight processes (a good choice for a game server).
This should not be a problem if you use a good server OS (e.g. Linux), but may be a limitation if your server uses a desktop version of Windows (e.g. may be limited to 200 connections).