Chi-square test approach for RNG evaluation - random

I am in RNG evaluation testing, RNG used in online gambling. Earlier I haven't use Chi-square testing for the same. But now most of the clients are demanding to use it. I understood the test very well. But I am concern about getting the actual count of particular symbols from scaled data? How can we calculate the same from scaled data? OR can we used simulation of games?

Related

Binary classification of sensor data

My problem is the following: I need to classify a data stream coming from an sensor. I have managed to get a baseline using the
median of a window and I subtract the values from that baseline (I want to avoid negative peaks, so I only use the absolute value of the difference).
Now I need to distinguish an event (= something triggered the sensor) from the noise near the baseline:
The problem is that I don't know which method to use.
There are several approaches of which I thought of:
sum up the values in a window, if the sum is above a threshold the class should be EVENT ('Integrate and dump')
sum up the differences of the values in a window and get the mean value (which gives something like the first derivative), if the value is positive and above a threshold set class EVENT, set class NO-EVENT otherwise
combination of both
(unfortunately these approaches have the drawback that I need to guess the threshold values and set the window size)
using SVM that learns from manually classified data (but I don't know how to set up this algorithm properly: which features should I look at, like median/mean of a window?, integral?, first derivative?...)
What would you suggest? Are there better/simpler methods to get this task done?
I know there exist a lot of sophisticated algorithms but I'm confused about what could be the best way - please have a litte patience with a newbie who has no machine learning/DSP background :)
Thank you a lot and best regards.
The key to evaluating your heuristic is to develop a model of the behaviour of the system.
For example, what is the model of the physical process you are monitoring? Do you expect your samples, for example, to be correlated in time?
What is the model for the sensor output? Can it be modelled as, for example, a discretized linear function of the voltage? Is there a noise component? Is the magnitude of the noise known or unknown but constant?
Once you've listed your knowledge of the system that you're monitoring, you can then use that to evaluate and decide upon a good classification system. You may then also get an estimate of its accuracy, which is useful for consumers of the output of your classifier.
Edit:
Given the more detailed description, I'd suggest trying some simple models of behaviour that can be tackled using classical techniques before moving to a generic supervised learning heuristic.
For example, suppose:
The baseline, event threshold and noise magnitude are all known a priori.
The underlying process can be modelled as a Markov chain: it has two states (off and on) and the transition times between them are exponentially distributed.
You could then use a hidden Markov Model approach to determine the most likely underlying state at any given time. Even when the noise parameters and thresholds are unknown, you can use the HMM forward-backward training method to train the parameters (e.g. mean, variance of a Gaussian) associated with the output for each state.
If you know even more about the events, you can get by with simpler approaches: for example, if you knew that the event signal always reached a level above the baseline + noise, and that events were always separated in time by an interval larger than the width of the event itself, you could just do a simple threshold test.
Edit:
The classic intro to HMMs is Rabiner's tutorial (a copy can be found here). Relevant also are these errata.
from your description a correctly parameterized moving average might be sufficient
Try to understand the Sensor and its output. Make a model and do a Simulator that provides mock-data that covers expected data with noise and all that stuff
Get lots of real sensor data recorded
visualize the data and verify your assuptions and model
annotate your sensor data i. e. generate ground truth (your simulator shall do that for the mock data)
from what you learned till now propose one or more algorithms
make a test system that can verify your algorithms against ground truth and do regression against previous runs
implement your proposed algorithms and run them against ground truth
try to understand the false positives and false negatives from the recorded data (and try to adapt your simulator to reproduce them)
adapt your algotithm(s)
some other tips
you may implement hysteresis on thresholds to avoid bouncing
you may implement delays to avoid bouncing
beware of delays if implementing debouncers or low pass filters
you may implement multiple algorithms and voting
for testing relative improvements you may do regression tests on large amounts data not annotated. then you check the flipping detections only to find performance increase/decrease

Is there a way to test the quality of a PRNG for multidimensional use?

I'm in the process of evaluating some PRNGs, both in terms of speed and quality. One aspect of quality I want to test is multidimensional distribution and bias.
I know of TestU01's batteries, and I plan on using them (and, perhaps, others that the NIST suggests).
But what about testing multidimensional bias? Boost's PRNG have some comments, and the Mersenne Twister is known to be uniform in several hundred dimensions, while the Hellekalek PRNG has good uniform distribution in "several" dimensions (however many that means...).
I imagine the runtime complexity of a battery testing for multidimensional bias would increase with each dimension. So it's possible there isn't a suitable battery for this test. However, that I haven't confirmed that suspicion.
Is there a known way to test PRNGs for multidimensional bias? I'd even be okay if the test is limited to 2, 3, or 4 dimensions; that would be better than no test at all.
TestU01 is good. PractRand is arguably better (full disclosure: I wrote PractRand). For some categories of PRNGs, RaBiGeTe is also decent. There are other options which are not good (NIST STS, Diehard, and Dieharder are well known but ineffective).
Any good test suite will test a wide variety of numbers of "dimensions", though fundamentally it is easier to do comprehensive testing for shorter range correlations, so a better job is done on smaller numbers of dimensions.
Generally, anything that passes the TestU01 BigCrush battery and/or one terabyte of PractRand standard battery is likely to be fine for real-world non-cryptographic usage. This kind of testing cannot identify some categories of problems however, particularly inter-seed correlation issues.

What are typical means by which a random number can be generated in an embedded system?

What are typical means by which a random number can be generated in an embedded system? Can you offer advantages and disadvantages for each method, and/or some factors that might make you choose one method over another?
First, you have to ask a fundamental question: do you need unpredictable random numbers?
For example, cryptography requires unpredictable random numbers. That is, nobody must be able to guess what the next random number will be. This precludes any method that seeds a random number generator from common parameters such as the time: you need a proper source of entropy.
Some applications can live with a non-cryptographic-quality random number generator. For example, if you need to communicate over Ethernet, you need a random number generator for the exponential back-off; statistic randomness is enough for this¹.
Unpredictable RNG
You need an unpredictable RNG whenever an adversary might try to guess your random numbers and do something bad based on that guess. For example, if you're going to generate a cryptographic key, or use many other kinds of cryptographic algorithms, you need an unpredictable RNG.
An unpredictable RNG is made of two parts: an entropy source, and a pseudo-random number generator.
Entropy sources
An entropy source kickstarts the unpredictability. Entropy needs to come from an unpredictable source or a blend of unpredictable sources. The sources don't need to be fully unpredictable, they need to not be fully predictable. Entropy quantifies the amount of unpredictability. Estimating entropy is difficult; look for research papers or evaluations from security professionals.
There are three approaches to generating entropy.
Your device may include some non-deterministic hardware. Some devices include a dedicated hardware RNG based on physical phenomena such as unstable oscillators, thermal noise, etc. Some devices have sensors which capture somewhat unpredictable values, such as the low-order bits of light or sound sensors.
Beware that hardware RNG often have precise usage conditions. Most methods require some time after power-up before their output is truly random. Often environmental factors such as extreme temperatures can affect the randomness. Read the RNG's usage notes very carefully. For cryptographic applications, it is generally recommended to make statistical tests the HRNG's output and refuse to operate if these tests fail.
Never use a hardware RNG directly. The output is rarely fully unpredictable — e.g. each bit may have a 60% probability of being 1, or the probability of two consecutive bits being equal may be only 48%. Use the hardware RNG to seed a PRNG as explained below.
You can preload a random seed during manufacturing and use that afterwards. Entropy doesn't wear off when you use it²: if you have enough entropy to begin with, you'll have enough entropy during the lifetime of your device. The danger with keeping entropy around is that it must remain confidential: if the entropy pool accidentally leaks, it's toast.
If your device has a connection to a trusted third party (e.g. a server of yours, or a master node in a sensor network), it can download entropy from that (over a secure channel).
Pseudo-random number generator
A PRNG, also called deterministic random bit generator (DRBG), is a deterministic algorithm that generates a sequence of random numbers by transforming an internal state. The state must be seeded with sufficient entropy, after which the PRNG can run practically forever. Cryptographic-quality PRNG algorithms are based on cryptographic primitives; always use a vetted algorithm (preferably some well-audited third-party code if available).
The PRNG needs to be seeded with entropy. You can choose to inject entropy once during manufacturing, or at each boot, or periodically, or any combination.
Entropy after a reboot
You need to take care that the device doesn't boot twice in the same RNG state: otherwise an observer can repeat the same sequence of RNG calls after a reset and will know the RNG output the second time round. This is an issue for factory-injected entropy (which by definition is always the same) as well as for entropy derived from sensors (which takes time to accumulate).
If possible, save the RNG state to persistent storage. When the device boots, read the RNG state, apply some transformation to it (e.g. by generating one random word), and save the modified state. After this is done, you can start returning random numbers to applications and system services. That way, the device will boot with a different RNG state each time.
If this is not possible, you ned to be very careful. If your device has factory-injected entropy plus a reliable clock, you can mix the clock value into the RNG state to achieve unicity; however, beware that if your device loses power and the clock restarts from some fixed origin (blinking twelve), you'll be in a repeatable state.
Predictable RNG state after a reset or at the first boot is a common problem with embedded devices (and with servers). For example, a study of RSA public keys showed that many had been generated with insufficient entropy, resulting in many devices generating the same key³.
Statistical RNG
If you can't achieve a cryptographic quality, you can fall back to a less good RNG. You need to be aware that some applications (including a lot of cryptography) will be impossible.
Any RNG relies on a two-part structure: a unique seed (i.e. an entropy source) and a deterministic algorithm based on that seed.
If you can't gather enough entropy, at least gather as much as possible. In particular, make sure that no two devices start from the same state (this can usually be achieved by mixing the serial number into the RNG seed). If at all possible, arrange for the seed not to repeat after a reset.
The only excuse not to use a cryptographic DRBG is if your device doesn't have enough computing power. In that case, you can fall back to faster algorithm that allow observers to guess some numbers based on the RNG's past or future output. The Mersenne twister is a popular choice, but there have been improvements since its invention.
¹ Even this is debatable: with non-crypto-quality random backoff, another device could cause a denial of service by aligning its retransmission time with yours. But there are other ways to cause a DoS, by transmitting more often.
² Technically, it does, but only at an astronomical scale.
³ Or at least with one factor in common, which is just as bad.
One way to do it would be to create a Pseudo Random Bit Sequence, just a train of zeros and ones, and read the bottom bits as a number.
PRBS can be generated by tapping bits off a shift register, doing some logic on them, and using that logic to produce the next bit shifted in. Seed the shift register with any non zero number. There's a math that tells you which bits you need to tap off of to generate a maximum length sequence (i.e., 2^N-1 numbers for an N-bit shift register). There are tables out there for 2-tap, 3-tap, and 4-tap implementations. You can find them if you search on "maximal length shift register sequences" or "linear feedback shift register.
from: http://www.markharvey.info/fpga/lfsr/
HOROWITZ AND HILL gave a great part of a chapter on this. Most of the math surrounds the nature of the PRBS and not the number you generate with the bit sequence. There are some papers out there on the best ways to get a number out of the bit sequence and improving correlation by playing around with masking the bits you use to generate the random number, e.g., Horan and Guinee, Correlation Analysis of Random Number Sequences based on Pseudo Random Binary Sequence Generation, In the Proc. of IEEE ISOC ITW2005 on Coding and Complexity; editor M.J. Dinneen; co-chairs U. Speidel and D. Taylor; pages 82-85
An advantage would be that this can be achieved simply by bitshifting and simple bit logic operations. A one-liner would do it. Another advantage is that the math is pretty well understood. A disadvantage is that this is only pseudorandom, not random. Also, I don't know much about random numbers, and there might be better ways to do this that I simply don't know about.
How much energy you expend on this would depend on how random you need the number to be. If I were running a gambling site, and needed random numbers to generate deals, I wouldn't depend on Pseudo Random Bit Sequences. In those cases, I would probably look into analog noise techniques, maybe Johnson Noise around a big honking resistor or some junction noise on a PN junction, amplify that and sample it. The advantages of that are that if you get it right, you have a pretty good random number. The disadvantages are that sometimes you want a pseudorandom number where you can exactly reproduce a sequence by storing a seed. Also, this uses hardware, which someone must pay for, instead of a line or two of code, which is cheap. It also uses A/D conversion, which is yet another peripheral to use. Lastly, if you do it wrong -- say make a mistake where 60Hz ends up overwhelming your white noise-- you can get a pretty lousy random number.
What are typical means by which a random number can be generated in an embedded system?
Giles indirectly stated this: it depends on the use.
If you are using the generator to drive a simulation, then all you need is a uniform distribution and a linear congruential generator (LCG) will work fine.
If you need a secure generator, then its a trickier problem. I'm side-stepping what it means to be secure, but from 10,000 feet think "wrap it in a cryptographic transformation", like a SHA-1/HMAC or SHA-512/HMAC. There are others ways, like sampling random events, but they may not be viable.
When you need secure random numbers, some low resource devices are notoriously difficult to work with. See, for example, Mining Your Ps and Qs: Detection of Widespread Weak Keys in Network Devices and Traffic sensor flaw that could allow driver tracking fixed. And a caveat for Linux 3.0 kernel users: the kernel removed a couple of entropy sources, so entropy depletion and starvation might have gotten worse. See Appropriate sources of entropy on LWN.
If you have a secure generator, then your problem becomes getting your hands on a good seed (or seeds over time). One of the better methods I have seen for environments that are constrained is Hedging. Hedging was proposed for Virtual Machines where a program could produce the same sequence after a VM reset.
The idea for hedging is to extract the randomness provided by your peer, and use it to keep you secure generator fit. For example, in the case of TLS, there is a client_random and a server_random. If the device is a server, then it would stir in the client_random. If the device is a client, then it would stir in server_random.
You can find the two papers of interest that address hedging at:
When Good Randomness Goes Bad: Virtual Machine Reset
Vulnerabilities and Hedging Deployed Cryptography
When Virtual is Harder than Real: Resource Allocation Challenges in
Virtual Machine Based IT Environments
Using client_random and a server_random is consistent with Peter Guttman's view on the subject: "mix every entropy source you can get your hands on into your PRNG, including less-than-perfect ones". Gutmann is the author of Engineering Security.
Hedging only solves part of the problem. You will still need to solve other problems, like how to bootstrap the entropy pool, how to regenerate system key pairs when the pool is in a bad state, and how persist the entropy across reboots when there's no filesystem.
Although it may not be the most complex or sound method, it can be fun to use external stimuli as your seed for random number generation. Consider using analogue input from a photodiode, or a thermistor. Even random noise from a floating pin could potentially yield some interesting results.

How random is random when using different RNG mobile implementations?

Just a foreword: I'm not exactly clear on how a RNG actually works.
If I write a simple routine to randomly pick a number between 0 and 1, and run this n number of times, I would expect a certain, relatively random distribution of numbers that should approach 50/50, give or take with some variance - i.e. a delta of x percent skewed one way or the other.
By looking at this variance, am I going to be able to see any meaningful patterns across a population of different devices?
For example, if I have a large population of iPhones running this routine simultaneously, would they all see a similar variance compared to running them on different days or compared to running a large batch of Android or WP7 devices? Or will the variance truly be random and be all over the place regardless of device or time or any other factor that would affect the randomness of the distribution?
This completely depends on several important factors in the PRNG. A PRNG (Pseudo-Random-Number-Geneator) is an algorithm, which can only simulate random numbers, and is initialized with an input state.
PRNGs are measured with their periodicity (how soon until it loops around), their distribution, and how easy is it to derive the next value from previous values or a known seed. All of these properties are very important to PRNGs used for cryptographic purposes.
So in short, it completely varies upon the algorithm in use by any of those devices. Provided the input state and algorithm are the same, the output can be expected to be the same.
If you want to test the quality of a PRNG, you can use the guidelines in FIPS-140-2, or use the DieHarder test suite.
Also refer to the Wikipedia page.

What Type of Random Number Generator is Used in the Casino Gaming Industry? [closed]

Closed. This question needs to be more focused. It is not currently accepting answers.
Closed 6 years ago.
Locked. This question and its answers are locked because the question is off-topic but has historical significance. It is not currently accepting new answers or interactions.
Given the extremely high requirements for unpredictability to prevent casinos from going bankrupt, what random number generation algorithm and seeding scheme is typically used in devices like slot machines, video poker machines, etc.?
EDIT: Related questions:
Do stateless random number generators exist?
True random number generator
Alternative Entropy Sources
There are many things that the gaming sites have to consider when choosing/implementing an RNG. Without due dilligence, it can go spectacularly wrong.
To get a licence to operate a gaming site in a particular jurisdiction usually requires that the RNG has been certified by an independent third-party. The third-party testers will analyse the source code and run statistical tests (e.g. Diehard) to ensure that the RNG behaves randomly. Reputable poker sites will usually include details of the certification that their RNG has undergone (for example: PokerStars's RNG page).
I've been involved in a few gaming projects, and for one of them I had to design and implement the RNG part, so I had to investigate all of these issues. Most poker sites will use some hardware device for entropy, but they won't rely on just hardware. Usually it will be used in conjunction with a pseudo-RNG (PRNG). There are two main reasons for this. Firstly, the hardware is slow, it can only extract a certain number of bits of entropy in a given time period from whatever physical process it is monitoring. Secondly, hardware fails in unpredictable ways that software PRNGs do not.
Fortuna is the state of the art in terms of cryptographically strong PRNGs. It can be fed entropy from one or more external sources (e.g. a hardware RNG) and is resilient in the face of attempted exploits or RNG hardware failure. It's a decent choice for gaming sites, though some might argue it is overkill.
Pokerroom.com used to just use Java's SecureRandom (they probably still do, but I couldn't find details on their site). This is mostly good enough, but it does suffer from the degrees of freedom problem.
Most stock RNG implementations (e.g. Mersenne Twister) do not have sufficient degrees of freedom to be able to generate every possible shuffle of a 52-card deck from a given initial state (this is something I tried to explain in a previous blog post).
EDIT: I've answered mostly in relation to online poker rooms and casinos, but the same considerations apply to physical video poker and video slots machines in real world casinos.
For a casino gaming applications, I think the seeding of the algorithm is the most important part to make sure all games "booted" up don't run through the same sequence or some small set of predictable sequences. That is, the source of entropy leading to the seed for the starting position is the critical thing. Beyond that, any good quality random number generator where each bit position as has a ~50/50 probability of being 1/0 and the period is relatively long would be sufficient. For example, something like the Mersenne twister PRNG has such properties.
Using cryptographically secure random generators only becomes important when the actual output of the random generator can be viewed directly. For example, if you were monitoring each number actually generated by the number generator - after viewing many numbers in the sequence - with a non-cryptographic generator information about that sequence can lead to establishing information about all the internal state of the generator. At this point, if you know what the algorithm looks like, you would be able to predict future numbers and that would be bad. The cryptographic generator prevents that reverse engineering back to the internal state so that predicting future numbers becomes "impossible".
However, in the case of a casino game, you would (or should) have no visibility to the actual numbers being generated under the hood. Each time a random number is generated - say a 32-bit number - that number will be used then, for example, mod 52 for a deck shuffling algorithm....no where in that process do you have any idea what numbers were being generated by the algorithm to shuffle that deck. That is, most of the bits of "randomness" is just being thrown out and even the ones being used you have no visibility to. Therefore, no way to reverse engineer the state.
Getting back to a true source of entropy to seed the whole process, that is the hard part. See the Wikipedia entry on entropy for some starting points on techniques.
As an aside, if you did want cryptographically sequence random numbers from a "regular" algorithm, a simple approach is to take a few random numbers in sequence, concatenate them together and then run something like MD5 or SHA-1 on them and the result is just as random and also cryptographically secure. That is, you just made your own "secure" random number generator.
We've been using the Protego R210-USB TRNG (and the non-usb version before that) as random seed generators in casino applications, with java.security.SecureRandom
on top. We had The Swedish National Laboratory of Forensic Science perform a separate audit of the R210, and it passed without a flaw.
You probably need a cryptographically secure pseudo-random generator. There are a lot of variants. Google "Blum-Blum-Shub", for example.
The security properties of these pseudo-random generators will generally be that, even when the attacker can observe polynomially many outputs from such generators, it won't be feasible to guess the next output with a probability much better than random guessing. Also, it is not feasible to distinguish the output of such generators from truly random bits. The security holds even when all the algorithms and parameters are known by the attacker (except for the secret seed).
The security of the generators is often measured with respect to a security parameter. In the case of BBS, it is the size of the modulus. This is no different from other crypto stuff. For example, RSA is secure only when the key is long enough.
Note that, the output of such generators may not be uniform (in fact, can be far away from uniform in statistical sense). But since no one can distinguish the two distributions without infinite computing power, these generators will suffice in most applications that require truly random bits.
Bear in mind, however, that these cryptographically secure pseudo-random generators are usually slow. So if speed is indeed a concern, less rigorous approaches may be more relevant, such as using hash functions, as suggested by Jeff.
Casino slot machines generate random numbers continuously at very high speed and use the most recent result(s) when the user pulls the lever (or hits the button) to spin the reels.
Even a simplistic generator can be used. Even if you knew the algorithm used, you cannot observe where in the sequence it is because nearly all the results are discarded. If somehow you did know where it was in the sequence, you'd have to have millisecond or better timing to take advantage of it.
Modern "mechanical reel" machines use PRNGs and drive the reels with stepper motors to simulate the old style spin-and-brake.
http://en.wikipedia.org/wiki/Slot_machine#Random_number_generators
http://entertainment.howstuffworks.com/slot-machine3.htm
Casinos shouldn't be using Pseudo-random number generators, they should be using hardware ones: http://en.wikipedia.org/wiki/Hardware_random_number_generator
I suppose anything goes for apps and offshore gambling nowadays, but all these other answers are incomplete, at least for Nevada Gaming Control Board licensed machines, which I believe the question is originally about.
The technical specifications for RNGs licensed in Nevada for gaming purposes are laid out in Regulation 14.040(2).
As of May 24, 2012, here is a summary of the rules a RNG must follow:
Static seeds cannot be used. You have to seed the RNG using a millisecond time source or other true entropy source which has no external readout anywhere on the machine. (This helps to reduce the incidence of "magic number" attacks)
The RNG must continue generating numbers in its sequence at least 100 times per second when the game is not being played. (This helps to avoid timing attacks)
RNG outputs cannot be reused; they must be used exactly once if at all and then thrown away.
Multi-system cabinets must use a separate RNG and separate seed for each game.
Games that use RNGs for helping to choose numbers on behalf of the player (such as Lotto Quick Pick) must use a separate RNG for that process.
Games must not roll RNGs until they are actually needed in a game. (i.e. you need to wait until the player chooses to deal or spin before generating RNGs)
The RNG must pass a 95% confidence chi-squared test based on 10,000 trials as apart of a system test. It must display a warning if this test fails, and it must disable play if it fails twice in a row.
It must remember, and be able to report on, the last 10 test results as described in 7.
Every possible game outcome must be generatable by the RNG. As a pessimal example, linear congruential generators don't actually generate every possible output in their range, so they're not very useful for gaming.
Additionally, your machine design has to be submitted to the gaming commission and it has to be approved, which is expensive and takes lots of time. There are a few third-party companies that specialize in auditing your new RNG to make sure it's random. Gaming Laboratories publishes an even stricter set of standards than Nevada does. They go into much greater detail about the limitations of hardware RNGs, and Nevada in particular likes to see core RNGs that it's previously approved. This can all get very expensive, which is why many developers prefer to license an existing previously-approved RNG for new game projects.
Here is a fun list of random number generator attacks to keep you up late at night.
For super-nerds only: the source for most USB hardware RNGs is typically an avalanche diode. However, the thermal noise produced by this type of diode is not quantum-random, and it is possible to influence the randomness of an avalanche diode by significantly lowering the temperature.
As a final note, someone above recommended just using a Mersenne Twister for random number generation. This is a Bad Idea unless you are taking additional entropy from some other source. The plain vanilla Mersenne Twister is highly inappropriate for gaming and cryptographic applications, as described by its creator.
If you want to do it properly you have to get physical - ERNIE the UK national savings number picker uses a shot noise in Neon tubes.
I for sure have seen a german gambling machine that was not allowed to be ran commercially after a given date, so I suppose it was a PNRG with a looong one time pad seed list.
Most poker sites use hardware random number generators. They will also modify the output to remove any scaling bias and often use 'pots' of numbers which can be 'stirred' using entropic events (user activity, serer i/o events etc). Quite often the resultant numbers just index pre-generated decks (starting off as a sorted list of cards).

Resources