I'm looking for an algorithm to determine the shortest path of a precedence graph with consideration of a connection graph. I looked into Dijkstra and Bellman Ford, but I don't think that they are viable for a precedence graph, because they only go outwards through one edge at every vertex.
But In a precedence graph there are also cases where you have to go through two or more edges to reach the next vertex. For example to disassemble you have to remove parts A and B first befor you can reach part C.
What I try to solve:
I have a simple precedence graph representing how to disassemble a product. Every vertex has a cost (time units). In this graph I have a start and destination. The result should be the minimum amount of time needed for disassembly.
Also to consider is that you could disassemble moules as a whole to reach a specific part depending on the connection graph. This graph shows how the parts are actually connected with each other. Like A,B and C have to be removed to reach D. A has to be removed first. Then you could remove B and C as a whole (removing C while B is still attached to it).
I now used the Deep-first search algorithm with some modifications to fit my purpose for the first part. The second part, where also modules should be considered to be disassembled instead of every single peace, is still missing. Maybe with some more modifications to the algorithm it could be possible as well.
Related
I have an application that uses a directed acyclic graph (DAG) to represent events ordered by time. My goal is to create or find an algorithm to simplify the graph by removing certain edges with specific properties. I'll try to define what I mean:
In the example below, a is the first node and f is the last. In the first picture, there are four unique paths to use to go from a to f. If we isolate the paths between b and e, we have two alternative paths. The path that is a single edge, namely the edge between b and e is the type of path that I want to remove, leaving the graph in the second picture as a result.
Therefore, all the edges I want to remove are defined as: single edges between two nodes that have at least one other path with >1 edges.
I realize this might be a very specific kind of graph operation, but hoping this algorithm already exists out there, my question to Stack Overflow is: Is this a known graph operation, or should I get my hiney to the algorithm drawing board?
Like Matt Timmermans said in the comment: that operation is called a transitive reduction.
Thanks Matt!
Let G be a directed weighted graph with nodes colored black or white, and all weights non-negative. No other information is specified--no start or terminal vertex.
I need to find a path (not necessarily simple) of minimal weight which alternates colors at least n times. My first thought is to run Kosaraju's algorithm to get the component graph, then find a minimal path between the components. Then you could select nodes with in-degree equal to zero since those will have at least as many color alternations as paths which start at components with in-degree positive. However, that also means that you may have an unnecessarily long path.
I've thought about maybe trying to modify the graph somehow, by perhaps making copies of the graph that black-to-white edges or white-to-black edges point into, or copying or deleting edges, but nothing that I'm brain-storming seems to work.
The comments mention using Dijkstra's algorithm, and in fact there is a way to make this work. If we create an new "root" vertex in the graph, and connect every other vertex to it with a directed edge, we can run a modified Dijkstra's algorithm from the root outwards, terminating when a given path's inversions exceeds n. It is important to note that we must allow revisiting each vertex in the implementation, so the key of each vertex in our priority queue will not be merely node_id, but a tuple (node_id, inversion_count), representing that vertex on its ith visit. In doing so, we implicitly make n copies of each vertex, one per potential visit. Visually, we are effectively making n copies of our graph, and translating the edges between each (black_vertex, white_vertex) pair to connect between the i and i+1th inversion graphs. We run the algorithm until we reach a path with n inversions. Alternatively, we can connect each vertex on the nth inversion graph to a "sink" vertex, and run any conventional path finding algorithm on this graph, unmodified. This will run in O(n(E + Vlog(nV))) time. You could optimize this quite heavily, and also consider using A* instead, with the smallest_inversion_weight * (n - inversion_count) as a heuristic.
Furthermore, another idea hit me regarding using knowledge of the inversion requirement to speedup the search, but I was unable to find a way to implement it without exceeding O(V^2) time. The idea is that you can use an addition-chain (like binary exponentiation) to decompose the shortest n-inversion path into two smaller paths, and rinse and repeat in a divide and conquer fashion. The issue is you would need to construct tables for the shortest i-inversion path from any two vertices, which would be O(V^2) entries per i, and O(V^2logn) overall. To construct each table, for every entry in the preceding table you'd need to append V other paths, so it'd be O(V^3logn) time overall. Maybe someone else will see a way to merge these two ideas into a O((logn)(E + Vlog(Vlogn))) time algorithm or something.
Let's say we have a maze, which has a width of W and a height of H. In this maze there are multiple people and multiple towers. The people are the sources (S) and the towers (D) are the destinations. It should be known that we have an omniscient view of the maze. My question is then this:
If I want to find the shortest path between any of the different SD combinations, how do I go about this?
At first, I can think of a naive solution that involves breaking this down into SD different OSOD operations, the problem is that this is quite time-consuming.
The second option would be to break it down into S different OSMD operations. But this I suspect is still too time inefficient for what I'm looking for.
I need an algorithm that can perform the pathfinding in O(WH) time. I've not been able to find anything that gives me the shortest path in O(WH) time and which is MSMD based. Hopefully, someone can point me in the right direction.
Imagine a graph that includes the maze as well as start and end vertexes outside the maze, with an edge from the start vertex to every S, and an edge from every D to the end vertex.
Now breadth-first search (since there are no weights) to find the shortest path from the single start to the single end.
I say 'imagine' that graph, because you don't actually have to build it. This ends up being a simple breadth-first search with minor modifications -- you start with all the S nodes in the root level, and stop when you reach any D.
I came upon wait-for graphs and I wonder, are there any efficient algorithms for detecting if adding an edge to a directed graph results in a cycle?
The graphs in question are mutable (they can have nodes and edges added or removed). And we're not interested in actually knowing an offending cycle, just knowing there is one is enough (to prevent adding an offending edge).
Of course it'd be possible to use an algorithm for computing strongly connected components (such as Tarjan's) to check if the new graph is acyclic or not, but running it again every time an edge is added seems quite inefficient.
If I understood your question correctly, then a new edge (u,v) is only inserted if there was no path from v to u before (i.e., if (u,v) does not create a cycle). Thus, your graph is always a DAG (directed acyclic graph). Using Tarjan's Algorithm to detect strongly connected components (http://en.wikipedia.org/wiki/Tarjan%27s_strongly_connected_components_algorithm) sounds like an overkill in this case. Before inserting (u,v), all you have to check is whether there is a directed path from v to u, which can be done with a simple BFS/DFS.
So the simplest way of doing it is the following (n = |V|, m = |E|):
Inserting (u,v): Check whether there is a path from v to u (BFS/DFS). Time complexity: O(m)
Deleting edges: Simply remove them from the graph. Time complexity: O(1)
Although inserting (u,v) takes O(m) time in the worst case, it is probably pretty fast in your situation. When doing the BFS/DFS starting from v to check whether u is reachable, you only visit vertices that are reachable from v. I would guess that in your setting the graph is pretty sparse and that the number of vertices reachable by another is not that high.
However, if you want to improve the theoretical running time, here are some hints (mostly showing that this will not be very easy). Assume we aim for testing in O(1) time whether there exists a directed path from v to u. The keyword in this context is the transitive closure of a DAG (i.e., a graph that contains an edge (u, v) if and only if there is a directed path from u to v in the DAG). Unfortunately, maintaining the transitive closure in a dynamic setting seems to be not that simple. There are several papers considering this problem and all papers I found were STOC or FOCS papers, which indicates that they are very involved. The newest (and fastest) result I found is in the paper Dynamic Transitive Closure via Dynamic Matrix Inverse by Sankowski (http://dl.acm.org/citation.cfm?id=1033207).
Even if you are willing to understand one of those dynamic transitive closure algorithms (or even want to implement it), they will not give you any speed up for the following reason. These algorithms are designed for the situation, where you have a lot of connectivity queries (which then can be performed in O(1) time) and only few changes in the graph. The goal then is to make these changes cheaper than recomputing the transitive closure. However, this update is still slower that a single check for connectivity. Thus, if you need to do an update on every connectivity query, it is better to use the simple approach mentioned above.
So why do I mention this approach of maintaining the transitive closure if it does not fit your needs? Well, it shows that searching an algorithm consuming only O(1) query time does probably not lead you to a solution faster than the simple one using BFS/DFS. What you could try is to get a query time that is faster than O(m) but worse than O(1), while updates are also faster than O(m). This is a very interesting problem, but it sounds to me like a very ambitious goal (so maybe do not spend too much time on trying to achieve it..).
As Mark suggested it is possible to use data structure that stores connected nodes. It is the best to use boolean matrix |V|x|V|. Values can be initialized with Floyd–Warshall algorithm. That is done in O(|V|^3).
Let T(i) be set of vertices that have path to vertex i, and F(j) set of vertices where exists path from vertex j. First are true's in i'th row and second true's in j'th column.
Adding an edge (i,j) is simple operation. If i and j wasn't connected before, than for each a from T(i) and each b from F(j) set matrix element (a,b) to true. But operation isn't cheap. In worst case it is O(|V|^2). That is in case of directed line, and adding edge from end to start vertex makes all vertices connected to all other vertices.
Removing an edge (i,j) is not so simple, but not more expensive operation in the worst case :-) If there is a path from i to j after removing edge, than nothing changes. That is checked with Dijkstra, less than O(|V|^2). Vertices that are not connected any more are (a,b):
a in T(i) - i - T(j),
b in F(j) + j
Only T(j) is changed with removing edge (i,j), so it has to be recalculated. That is done by any kind of graph traversing (BFS, DFS), by going in opposite edge direction from vertex j. That is done in less then O(|V|^2). Since setting of matrix element is in worst case is again O(|V|^2), this operation has same worst case complexity as adding edge.
This is a problem which I recently faced in a slightly different situation (optimal ordering of interdependent compiler instructions).
While I can't improve on O(n*n) theoretical bounds, after a fair amount of experimentation and assuming heuristics for my case (for example, assuming that the initial ordering wasn't created maliciously) the following was the best compromise algorithm in terms of performance.
(In my case I had an acceptable "right side failure": after the initial nodes and arcs were added (which was guaranteed to be possible), it was acceptable for the optimiser to occasionally reject the addition of further arcs where one could actually be added. This approximation isn't necessary for this algorithm when carried to completion, but it does admit such an approximation if you wish to do so, and so limiting its runtime further).
While a graph is topologically sorted, it is guaranteed to be cycle-free. In the first phase when I had a static bulk of nodes and arcs to add, I added the nodes and then topologically sorted them.
During the second phase, adding additional arcs, there are two situations when considering an arc from A to B. If A already lies to the left of B in the sort, an arc can simply be added and no cycle can be generated, as the list is still topologically sorted.
If B is to the left of A, we consider the sub-sequence between B and A and partition it into two disjoint sequences X, Y, where X is those nodes which can reach A (and Y the others). If A is not reachable from B, ie there are no direct arcs from B into X or to A, then the sequence can be reordered XABY before adding the A to B arc, showing it is still cycle-free and maintaining the topological sort. The efficiency over the naive algorithm here is that we only need consider the subsequence between B and A as our list is topologically sorted: A is not reachable from any node to the right of A. For my situation, where localised reorderings are the most frequent and important, this an important gain.
As we don't reorder within the sequences X,A,B,Y, clearly any arcs which start or end within the same sequence are still ordered correctly, and the same in each flank, and any "fly-over" arcs from the left to the right flanks. Any arcs between the flanks and X,A,B,Y are also still ordered correctly as our reordering is restricted to this local region. So we only need to consider arcs between our four sequences. Consider each possible "problematic" arc for our final ordering XABY in turn: YB YA YX BA BX AX. Our initial order was B[XY]A, so AX and YB cannot occur. X reaches A, but Y does not, therefore YX and YA do not occur or A could be reached from the source of the arc in Y (potentially via X) a contradiction. Our criterion for acceptability was that there are no links BX or BA. So there are no problematic arcs, and we are still topologically sorted.
Our only acceptability criterion (that A is not reachable from B) is clearly sufficient to create a cycle on adding the arc A->B: B -(X)-> A -> B, so the converse is also shown.
This can be implemented reasonably efficiently if we can add a flag to each node. Consider the nodes [BXY] going right-to-left from the node immediately to the left of A. If that node has a direct arc to A then set the flag. At an arbitrary such node, we need only consider direct outgoing arcs: the nodes to its right are either after A (and so irrelevant), or else have already been flagged if reachable from A, so the flag on such an arbitrary node is set when any flagged nodes are encountered by direct link. If B is not flagged at the end of the process, the reordering is acceptable and the flagged nodes comprise X.
Though this always yields a correct ordering if carried to completion (as far as I can tell), as I mentioned in the introduction it is particularly efficient if your initial build is approximately correct (in the sense of accommodating of likely additional arcs without reordering).
There also exists an effective approximation, if your context is such that "outrageous" arcs can be rejected (those which would massively reorder) by limiting the A to B distance you are prepared to scan. If you have an initial list of the additional arcs you wish to add, they can be ordered by increasing distance in the initial ordering until you run out of some scanning "credit", and call your optimisation a day at that point.
If the graph is directed, you would only have to check the parent nodes (navigate up until you reach the root) of the node where the new edge should start. If one of the parent nodes is equal to the end of the edge, adding the edge would create a cycle.
If all previous jobs are in Topologically sorted order. Then if you add an edge that appears to brake the sort, and can not be fixed, then you have a cycle.
https://stackoverflow.com/a/261621/831850
So if we have a sorted list of nodes:
1, 2, 3, ..., x, ..., z, ...
Such that each node is waiting for nodes to its left.
Say we want to add an edge from x->z. Well that appears to brake the sort. So we can move the node at x to position z+1 which will fix the sort iif none of the nodes (x, z] have an edge to the node at x.
Is there an algorithm that can check, in a directed graph, if a vertex, let's say V2, is reachable from a vertex V1, without traversing all the vertices?
You might find a route to that node without traversing all the edges, and if so you can give a yes answer as soon as you do. Nothing short of traversing all the edges can confirm that the node isn't reachable (unless there's some other constraint you haven't stated that could be used to eliminate the possibility earlier).
Edit: I should add that it depends on how often you need to do queries versus how large (and dense) your graph is. If you need to do a huge number of queries on a relatively small graph, it may make sense to pre-process the data in the graph to produce a matrix with a bit at the intersection of any V1 and V2 to indicate whether there's a connection from V1 to V2. This doesn't avoid traversing the graph, but it can avoid traversing the graph at the time of the query. I.e., it's basically a greedy algorithm that assumes you're going to eventually use enough of the combinations that it's easiest to just traverse them all and store the result. Depending on the size of the graph, the pre-processing step may be slow, but once it's done executing a query becomes quite fast (constant time, and usually a pretty small constant at that).
Depth first search or breadth first search. Stop when you find one. But there's no way to tell there's none without going through every one, no. You can improve the performance sometimes with some heuristics, like if you have additional information about the graph. For example, if the graph represents a coordinate space like a real map, and most of the time you know that there's going to be a mostly direct path, then you can attempt to have the depth-first search look along lines that "aim towards the target". However, imagine the case where the start and end points are right next to each other, but with no vector inbetween, and to find it, you have to go way out of the way. You have to check every case in order to be exhaustive.
I doubt it has a name, but a breadth-first search might go like this:
Add V1 to a queue of nodes to be visited
While there are nodes in the queue:
If the node is V2, return true
Mark the node as visited
For every node at the end of an outgoing edge which is not yet visited:
Add this node to the queue
End for
End while
Return false
Create an adjacency matrix when the graph is created. At the same time you do this, create matrices consisting of the powers of the adjacency matrix up to the number of nodes in the graph. To find if there is a path from node u to node v, check the matrices (starting from M^1 and going to M^n) and examine the value at (u, v) in each matrix. If, for any of the matrices checked, that value is greater than zero, you can stop the check because there is indeed a connection. (This gives you even more information as well: the power tells you the number of steps between nodes, and the value tells you how many paths there are between nodes for that step number.)
(Note that if you know the number of steps in the longest path in your graph, for whatever reason, you only need to create a number of matrices up to that power. As well, if you want to save memory, you could just store the base adjacency matrix and create the others as you go along, but for large matrices that may take a fair amount of time if you aren't using an efficient method of doing the multiplications, whether from a library or written on your own.)
It would probably be easiest to just do a depth- or breadth-first search, though, as others have suggested, not only because they're comparatively easy to implement but also because you can generate the path between nodes as you go along. (Technically you'd be generating multiple paths and discarding loops/dead-end ones along the way, but whatever.)
In principle, you can't determine that a path exists without traversing some part of the graph, because the failure case (a path does not exist) cannot be determined without traversing the entire graph.
You MAY be able to improve your performance by searching backwards (search from destination to starting point), or by alternating between forward and backward search steps.
Any good AI textbook will talk at length about search techniques. Elaine Rich's book was good in this area. Amazon is your FRIEND.
You mentioned here that the graph represents a road network. If the graph is planar, you could use Thorup's Algorithm which creates an O(nlogn) space data structure that takes O(nlogn) time to build and answers queries in O(1) time.
Another approach to this problem would allow you to ignore all of the vertices. If you were to only look at the edges, you can produce a transitive closure array that will show you each vertex that is reachable from any other vertex.
Start with your list of edges:
Va -> Vc
Va -> Vd
....
Create an array with start location as the rows and end location as the columns. Fill the arrays with 0. For each edge in the list of edges, place a one in the start,end coordinate of the edge.
Now you iterate a few times until either V1,V2 is 1 or there are no changes.
For each row:
NextRowN = RowN
For each column that is true for RowN
Use boolean OR to OR in the results of that row of that number with the current NextRowN.
Set RowN to NextRowN
If you run this algorithm until the end, you will quickly have a complete list of all reachable vertices without looking at any of them. The runtime is proportional to the number of edges. This would work well with a reasonable implementation and a reasonable number of edges.
A slightly more complex version of this algorithm would be to only calculate the vertices reachable by V1. To do this, you would focus your scope on the ones that are currently reachable at any given time. You can also limit adding rows to only one time, since the other rows are never changing.
In order to be sure, you either have to find a path, or traverse all vertices that are reachable from V1 once.
I would recommend an implementation of depth first or breadth first search that stops when it encounters a vertex that it has already seen. The vertex will be processed on the first occurrence only. You need to make sure that the search starts at V1 and stops when it runs out of vertices or encounters V2.