I am making a completion suggester. I would like to increment the weight of some of the indexed docs by incrementing them. I have:
POST /tester/
{
"mappings": {
"song": {
"properties": {
"suggest": {
"type": "completion",
"analyzer": "simple",
"search_analyzer" : "simple",
"payloads": true,
"preserve_separators": true,
"preserve_position_increments": true,
"max_input_length": 100
}
}
}
}
}
// Index a doc
PUT tester/song/1
{
"name" : "Nevermind",
"suggest" : {
"input": [ "Nevermind", "Nirvana" ],
"output": "Nirvana - Nevermind",
"payload" : { "artistId" : 2321 },
"weight" : 1
}
}
// Increment the weight
POST /tester/song/1
{
"script" : {
"inline": "ctx._source.suggest.weight += 1"
}
}
// The result of GET /tester
{
"_index": "tester",
"_type": "song",
"_id": "1",
"_score": 1,
"_source": {
"script": {
"inline": "ctx._source.suggest.weight += 1"
}
}
}
Rather than incrementing the weight it rewrites the document. What am I doing wrong here?
First by adding these lines to your configuration you should enable dynamic scripting:
script.inline: true
script.indexed: true
Then you need to use _update endpoint to update:
POST 'localhost:9200/tester/song/1/_update' -d '
{
"script" : {
"inline": "ctx._source.suggest.weight += 1"
}
}'
Check:https://www.elastic.co/guide/en/elasticsearch/reference/current/docs-update.html#_scripted_updates
Related
Is it possible to use index boost when using completion suggester in Elasticsearch? I have tried many different ways but doesn't seem to work. Haven't found any reference in the documentation claiming that it does not work for completion suggester. Example:
POST index1,index2/_search
{
"suggest" : {
"name_suggest" : {
"text" : "my_query",
"completion" : {
"field" : "name_suggest",
"size" : 7,
"fuzzy" :{}
}
}
},
"indices_boost" : [
{ "index1" : 2 },
{ "index2" : 1.5 }
]
}
The above does not return boosted scores. The scores are the same compared to running it without the indices_boost parameter.
Tried few options but these didn't work directly, instead, you can define the weight of a document at index-time, and these could be used as a workaround to get the boosted document, below is the complete example.
Index mapping same for index1, index2
{
"mappings": {
"properties": {
"suggest": {
"type": "completion"
},
"title": {
"type": "keyword"
}
}
}
}
Index doc 1 with weight in index-1
{
"suggest": {
"input": [
"Nevermind",
"Nirvana"
],
"weight": 30
}
}
Similar doc is inserted in index-2 with diff weight
{
"suggest": {
"input": [
"Nevermind",
"Nirvana"
],
"weight": 10 --> note less weight
}
}
And the simple search will now sort it according to weight
{
"suggest": {
"song-suggest": {
"prefix": "nir",
"completion": {
"field": "suggest"
}
}
}
}
And search result
{
"text": "Nirvana",
"_index": "index-1",
"_type": "_doc",
"_id": "1",
"_score": 34.0,
"_source": {
"suggest": {
"input": [
"Nevermind",
"Nirvana"
],
"weight": 30
}
}
},
{
"text": "Nirvana",
"_index": "index-2",
"_type": "_doc",
"_id": "1",
"_score": 30.0,
"_source": {
"suggest": {
"input": [
"Nevermind",
"Nirvana"
],
"weight": 10
}
}
}
]
I'm completely new to elasticsearch and I'm trying to use elasticsearch completion suggester on an existing field called "identity.full_name", index = "search" and type = "person".
I followed the below index to change the mappings of the field.
1)
POST /search/_close
2)
POST search/person/_mapping
{
"person": {
"properties": {
"identity.full_name": {
"type": "text",
"fields":{
"suggest":{
"type":"completion"
}
}
}
}
}
}
3)
POST /search/_open
When I check the mappings at this point, using
GET search/_mapping/person/field/identity.full_name
I get the result,
{
"search": {
"mappings": {
"person": {
"identity.full_name": {
"full_name": "identity.full_name",
"mapping": {
"full_name": {
"type": "text",
"fields": {
"completion": {
"type": "completion",
"analyzer": "simple",
"preserve_separators": true,
"preserve_position_increments": true,
"max_input_length": 50
},
"keyword": {
"type": "keyword",
"ignore_above": 256
},
"suggest": {
"type": "completion",
"analyzer": "simple",
"preserve_separators": true,
"preserve_position_increments": true,
"max_input_length": 50
}
}
}
}
}
}
}
}
}
Which is suggesting that it has been updated to be a completion field.
However, when I'm querying to check if this works using,
GET search/person/_search
{
"suggest": {
"person-suggest" : {
"prefix" : "EMANNUEL",
"completion" : {
"field" : "identity.full_name"
}
}
}
}
It is giving me the error "Field [identity.full_name] is not a completion suggest field"
I'm not sure why I'm getting this error. Is there anything else I can try?
sample data:
{
"_index": "search",
"_type": "person",
"_id": "3106105149",
"_score": 1,
"_source": {
"identity": {
"id": "3106105149",
"first_name": "FLORENT",
"last_name": "TEBOUL",
"full_name": "FLORENT TEBOUL"
}
}
}
{
"_index": "search",
"_type": "person",
"_id": "125296353",
"_score": 1,
"_source": {
"identity": {
"id": "125296353",
"first_name": "CHRISTINA",
"last_name": "BHAN",
"full_name": "CHRISTINA K BHAN"
}
}
}
so when I do a GET based on prefix "CHRISTINA"
GET search/person/_search
{
"suggest": {
"person-suggest" : {
"prefix" : "CHRISTINA",
"completion" : {
"field" : "identity.full_name.suggest"
}
}
}
}
I'm getting all the results like a match_all query.
You should use it like
GET search/person/_search
{
"suggest": {
"person-suggest" : {
"prefix" : "EMANNUEL",
"completion" : {
"field" : "identity.full_name.suggest"
}
}
}
}
Mapping for GET search/_mapping/person/field/identity.full_name
{
"search" : {
"mappings" : {
"person" : {
"identity.full_name" : {
"full_name" : "identity.full_name",
"mapping" : {
"full_name" : {
"type" : "text",
"fields" : {
"suggest" : {
"type" : "completion",
"analyzer" : "simple",
"preserve_separators" : true,
"preserve_position_increments" : true,
"max_input_length" : 50
}
}
}
}
}
}
}
}
}
I am using multi_match with phrase_prefix for full text search in Elasticsearch 5.5. ES query looks like
{
query: {
bool: {
must: {
multi_match: {
query: "butt",
type: "phrase_prefix",
fields: ["item.name", "item.keywords"],
max_expansions: 10
}
}
}
}
}
I am getting following response
[
{
"_index": "items_index",
"_type": "item",
"_id": "2",
"_score": 0.61426216,
"_source": {
"item": {
"keywords": "amul butter, milk, butter milk, flavoured",
"name": "Flavoured Butter"
}
}
},
{
"_index": "items_index",
"_type": "item",
"_id": "1",
"_score": 0.39063013,
"_source": {
"item": {
"keywords": "amul butter, milk, butter milk",
"name": "Butter Milk"
}
}
}
]
Mappings is as follows(I am using default mappings)
{
"items_index" : {
"mappings" : {
"parent_doc": {
...
"properties": {
"item" : {
"properties" : {
"keywords" : {
"type" : "text",
"fields" : {
"keyword" : {
"type" : "keyword",
"ignore_above" : 256
}
}
},
"name" : {
"type" : "text",
"fields" : {
"keyword" : {
"type" : "keyword",
"ignore_above" : 256
}
}
}
}
}
}
}
}
}
How item with "name": "Flavoured Butter" getting higher score of 0.61426216 against the document with "name": "Butter Milk" and score 0.39063013?
I tried applying boost to "item.name" and removing "item.keywords" form search fields getting same results.
How scores in Elasticsearch works? Are above results correct in terms of relavance?
The scoring for phrase_prefix is similar to that of best_fields, meaning that score of a document is the score obtained from the best_field, which here is item.keywords.
So, item.name isn't adding to score
Refer: multi-match-types
You can use 2 multi_match queries to combine the score from keywords and name.
{
"query": {
"bool": {
"must": [{
"multi_match": {
"query": "butt",
"type": "phrase_prefix",
"fields": [
"item.keywords"
],
"max_expansions": 10
}
},{
"multi_match": {
"query": "butt",
"type": "phrase_prefix",
"fields": [
"item.name"
],
"max_expansions": 10
}
}]
}
}
}
I did a pretty simple test. I build a student index and a type, then I define a mapping:
POST student
{
"mappings" : {
"ing3" : {
"properties" : {
"quote": {
"type": "string",
"analyzer": "english"
}
}
}
}
}
After that I add 3 students to this index:
POST /student/ing3/1
{
"name": "Smith",
"first_name" : "John",
"quote" : "Learning is so cool!!"
}
POST /student/ing3/2
{
"name": "Roosevelt",
"first_name" : "Franklin",
"quote" : "I learn everyday"
}
POST /student/ing3/3
{
"name": "Black",
"first_name" : "Mike",
"quote" : "I learned a lot at school"
}
At this point I thought that the english tokeniser will tokenise all the word in my quotes so if I'm making a search like:
GET /etudiant/ing3/_search
{
"query" : {
"term" : { "quote" : "learn" }
}
}
I will have all the document as a result since my tokeniser will make equal "learn, learning, learned" and I was right. But when I try this request:
GET /student/ing3/_search
{
"query" : {
"term" : { "quote" : "learned" }
}
}
I got zero hit and in my opinion I should have the 3rd document (at least?). But for me Elasticsearch is also supposed to index learned and learning not only learn. Am I wrong? Is my request wrong?
If you check:
GET 'index/_analyze?field=quote' -d "I learned a lot at school"
you will see that your sentence is analyzed as:
{
"tokens":[
{
"token":"i",
"start_offset":0,
"end_offset":1,
"type":"<ALPHANUM>",
"position":0
},
{
"token":"learn",
"start_offset":2,
"end_offset":9,
"type":"<ALPHANUM>",
"position":1
},
{
"token":"lot",
"start_offset":12,
"end_offset":15,
"type":"<ALPHANUM>",
"position":3
},
{
"token":"school",
"start_offset":19,
"end_offset":25,
"type":"<ALPHANUM>",
"position":5
}
]
}
So english analyzer removes punctions and stop words and tokenize words in their root form.
https://www.elastic.co/guide/en/elasticsearch/guide/current/using-language-analyzers.html
You can use match query which will also analyze your search text so will match:
GET /etudiant/ing3/_search
{
"query" : {
"match" : { "quote" : "learned" }
}
}
There is another way. You can both stem the terms (the english analyzer does have a stemmer), but also keep the original terms, by using a keyword_repeat token filter and then using a unique token filter with "only_on_same_position": true to remove unnecessary duplicates after the stemming:
PUT student
{
"settings": {
"analysis": {
"analyzer": {
"myAnalyzer": {
"type": "custom",
"tokenizer": "standard",
"filter": [
"english_possessive_stemmer",
"lowercase",
"english_stop",
"keyword_repeat",
"english_stemmer",
"unique_stem"
]
}
},
"filter": {
"unique_stem": {
"type": "unique",
"only_on_same_position": true
},
"english_stop": {
"type": "stop",
"stopwords": "_english_"
},
"english_stemmer": {
"type": "stemmer",
"language": "english"
},
"english_possessive_stemmer": {
"type": "stemmer",
"language": "possessive_english"
}
}
}
},
"mappings": {
"ing3": {
"properties": {
"quote": {
"type": "string",
"analyzer": "myAnalyzer"
}
}
}
}
}
In this case the term query will work, as well. If you look at what terms are actually being indexed:
GET /student/_search
{
"fielddata_fields": ["quote"]
}
it will be clear why now it matches:
"hits": [
{
"_index": "student",
"_type": "ing3",
"_id": "2",
"_score": 1,
"_source": {
"name": "Roosevelt",
"first_name": "Franklin",
"quote": "I learn everyday"
},
"fields": {
"quote": [
"everydai",
"everyday",
"i",
"learn"
]
}
},
{
"_index": "student",
"_type": "ing3",
"_id": "1",
"_score": 1,
"_source": {
"name": "Smith",
"first_name": "John",
"quote": "Learning is so cool!!"
},
"fields": {
"quote": [
"cool",
"learn",
"learning",
"so"
]
}
},
{
"_index": "student",
"_type": "ing3",
"_id": "3",
"_score": 1,
"_source": {
"name": "Black",
"first_name": "Mike",
"quote": "I learned a lot at school"
},
"fields": {
"quote": [
"i",
"learn",
"learned",
"lot",
"school"
]
}
}
]
I am using ElasticSearch to store the Tweets I receive from the Twitter Streaming API. Before storing them I'd like to apply an english stemmer to the Tweet content, and to do that I'm trying to use ElasticSearch analyzers with no luck.
This is the current template I am using:
PUT _template/twitter
{
"template": "139*",
"settings" : {
"index":{
"analysis":{
"analyzer":{
"english":{
"type":"custom",
"tokenizer":"standard",
"filter":["lowercase", "en_stemmer", "stop_english", "asciifolding"]
}
},
"filter":{
"stop_english":{
"type":"stop",
"stopwords":["_english_"]
},
"en_stemmer" : {
"type" : "stemmer",
"name" : "english"
}
}
}
}
},
"mappings": {
"tweet": {
"_timestamp": {
"enabled": true,
"store": true,
"index": "analyzed"
},
"_index": {
"enabled": true,
"store": true,
"index": "analyzed"
},
"properties": {
"geo": {
"properties": {
"coordinates": {
"type": "geo_point"
}
}
},
"text": {
"type": "string",
"analyzer": "english"
}
}
}
}
}
When I start the Streaming and the index is created, all the mappings I've defined seem to apply correctly, but the text is stored as it comes from Twitter, completely raw. The index metadata shows:
"settings" : {
"index" : {
"uuid" : "xIOkEcoySAeZORr7pJeTNg",
"analysis" : {
"filter" : {
"en_stemmer" : {
"type" : "stemmer",
"name" : "english"
},
"stop_english" : {
"type" : "stop",
"stopwords" : [
"_english_"
]
}
},
"analyzer" : {
"english" : {
"type" : "custom",
"filter" : [
"lowercase",
"en_stemmer",
"stop_english",
"asciifolding"
],
"tokenizer" : "standard"
}
}
},
"number_of_replicas" : "1",
"number_of_shards" : "5",
"version" : {
"created" : "1010099"
}
}
},
"mappings" : {
"tweet" : {
[...]
"text" : {
"analyzer" : "english",
"type" : "string"
},
[...]
}
}
What am I doing wrong? The analyzers seems to be applied correctly, but nothing is happening :/
Thank you!
PS: The search query I use to realize the analyzer is not being applied:
curl -XGET 'http://localhost:9200/_all/_search?pretty' -d '{
"query": {
"filtered": {
"query": {
"bool": {
"should": [
{
"query_string": {
"query": "_index:1397574496990"
}
}
]
}
},
"filter": {
"bool": {
"must": [
{
"match_all": {}
},
{
"exists": {
"field": "geo.coordinates"
}
}
]
}
}
}
},
"fields": [
"geo.coordinates",
"text"
],
"size": 50000
}'
This should return the stemmed text as one of the fields, but the response is:
{
"took": 29,
"timed_out": false,
"_shards": {
"total": 47,
"successful": 47,
"failed": 0
},
"hits": {
"total": 2,
"max_score": 0.97402453,
"hits": [
{
"_index": "1397574496990",
"_type": "tweet",
"_id": "456086643423068161",
"_score": 0.97402453,
"fields": {
"geo.coordinates": [
-118.21122533,
33.79349318
],
"text": [
"Happy turtle Tuesday ! The week is slowly crawling to Wednesday good morning everyone 🌊🐢🐢🐢☀️#turtles… http://t.co/wAVmcxnf76"
]
}
},
{
"_index": "1397574496990",
"_type": "tweet",
"_id": "456086701451259904",
"_score": 0.97333175,
"fields": {
"geo.coordinates": [
-81.017636,
33.998741
],
"text": [
"Tuesday is Twins Day over here, apparently (it's a far too often occurrence) #tuesdaytwinsday… http://t.co/Umhtp6SoX6"
]
}
}
]
}
}
The text field is exactly the same that came from Twitter (I'm using the streaming API). What I expect is the text fields stemmed, as the analyzer is applied.
Analyzers don't affect the way data is stored. So, no matter which analyzer you are using you will get the same text back from source and stored fields. Analyzer are applied when you search. So by searching for something like text:twin and finding records with the word Twins, you will know that stemmer was applied.