I am using multi_match with phrase_prefix for full text search in Elasticsearch 5.5. ES query looks like
{
query: {
bool: {
must: {
multi_match: {
query: "butt",
type: "phrase_prefix",
fields: ["item.name", "item.keywords"],
max_expansions: 10
}
}
}
}
}
I am getting following response
[
{
"_index": "items_index",
"_type": "item",
"_id": "2",
"_score": 0.61426216,
"_source": {
"item": {
"keywords": "amul butter, milk, butter milk, flavoured",
"name": "Flavoured Butter"
}
}
},
{
"_index": "items_index",
"_type": "item",
"_id": "1",
"_score": 0.39063013,
"_source": {
"item": {
"keywords": "amul butter, milk, butter milk",
"name": "Butter Milk"
}
}
}
]
Mappings is as follows(I am using default mappings)
{
"items_index" : {
"mappings" : {
"parent_doc": {
...
"properties": {
"item" : {
"properties" : {
"keywords" : {
"type" : "text",
"fields" : {
"keyword" : {
"type" : "keyword",
"ignore_above" : 256
}
}
},
"name" : {
"type" : "text",
"fields" : {
"keyword" : {
"type" : "keyword",
"ignore_above" : 256
}
}
}
}
}
}
}
}
}
How item with "name": "Flavoured Butter" getting higher score of 0.61426216 against the document with "name": "Butter Milk" and score 0.39063013?
I tried applying boost to "item.name" and removing "item.keywords" form search fields getting same results.
How scores in Elasticsearch works? Are above results correct in terms of relavance?
The scoring for phrase_prefix is similar to that of best_fields, meaning that score of a document is the score obtained from the best_field, which here is item.keywords.
So, item.name isn't adding to score
Refer: multi-match-types
You can use 2 multi_match queries to combine the score from keywords and name.
{
"query": {
"bool": {
"must": [{
"multi_match": {
"query": "butt",
"type": "phrase_prefix",
"fields": [
"item.keywords"
],
"max_expansions": 10
}
},{
"multi_match": {
"query": "butt",
"type": "phrase_prefix",
"fields": [
"item.name"
],
"max_expansions": 10
}
}]
}
}
}
Related
I have a field called that is inside a nested field "name" that is a "Keyword" in elastic search.
Name field contains 2 values.
Jagannathan Rajagopalan
Rajagopalan.
If I query "Rajagopalan", I should get only the item #2.
If I query the complete Jagannathan Rajagopalan, I should get #1.
How do I achieve it?
You need to use the term query which is used for exact search. Added a working example according to your use-case.
Index mapping
{
"mappings": {
"properties": {
"name": {
"type": "nested",
"properties": {
"keyword": {
"type": "keyword"
}
}
}
}
}
}
Index sample docs
{
"name" : {
"keyword" : "Jagannathan Rajagopalan"
}
}
And another doc
{
"name" : {
"keyword" : "Jagannathan"
}
}
And search query
{
"query": {
"nested": {
"path": "name",
"query": {
"bool": {
"must": [
{
"match": {
"name.keyword": "Jagannathan Rajagopalan"
}
}
]
}
}
}
}
}
Search result
"hits": [
{
"_index": "key",
"_type": "_doc",
"_id": "2",
"_score": 0.6931471,
"_source": {
"name": {
"keyword": "Jagannathan Rajagopalan"
}
}
}
]
I'd like to search documents using Python through ElasticSearch. I am looking for documents which contains word and/or phrase in any one of three fields.
GET /my_docs/_search
{
"query": {
"multi_match": {
"query": "Ford \"lone star\"",
"fields": [
"title",
"description",
"news_content"
],
"minimum_should_match": "-1",
"operator": "AND"
}
}
}
In the above query, I'd like to get documents whose title, description, or news_content contain "Ford" and "lone star" (as a phrase).
However, it seems that it does not consider "lone star" as a phrase. It returns documents with "Ford", "lone", and "star".
So, I was able to reproduce your issue and solved it using the REST API of Elasticsearch as I am not familiar with the python syntax and glad you provided your search query in JSON format, and I built my solution on top of it.
Index def
{
"mappings": {
"properties": {
"title": {
"type": "text"
},
"description" :{
"type" : "text"
},
"news_content" : {
"type" : "text"
}
}
}
}
Sample docs
{
"title" : "Ford",
"news_content" : "lone star", --> note this matches your criteria
"description" : "foo bar"
}
{
"title" : "Ford",
"news_content" : "lone",
"description" : "star"
}
Search query you are looking for
{
"query": {
"bool": {
"must": [ --> note this, both clause must match
{
"multi_match": {
"query": "ford",
"fields": [
"title",
"description",
"news_content"
]
}
},
{
"multi_match": {
"query": "lone star",
"fields": [
"title",
"description",
"news_content"
],
"type": "phrase" --> note `lone star` must be phrase
}
}
]
}
}
}
Result contains just one doc from sample
"hits": [
{
"_index": "so_phrase",
"_type": "_doc",
"_id": "1",
"_score": 0.9527341,
"_source": {
"title": "Ford",
"news_content": "lone star",
"description": "foo bar"
}
}
]
Someone asked this question but no one seems to answer or tried to suggest possible ways to solve it: https://discuss.elastic.co/t/count-the-number-of-words-in-the-field-elastic-search-6-2/121373
Now, I'm trying to produce a report from Elasticsearch to count the number of WORDS / TOKENS from a specific field called title and content
Is there a proper aggregation for this?
For example, I have this query:
GET web/_search
{
"query":{
"bool":{
"must":[
{
"query_string":{
"fields":[
"title",
"content"
],
"query":"((\"Hello\") AND (\"World\")"
}
},
{
"range":{
"pub_date":{
"from":1569456000,
"to":1570060800
}
}
}
]
}
}
}
And for example, this query produced 23 DOCUMENTS, I want to make a response telling me how MANY words do those 23 documents contain based from the title and content fields?
I would leverage the token_count data type. In your index, you can add a sub-field of type token_count to your title and content fields, like this:
PUT web
{
"mappings": {
"properties": {
"title": {
"type": "text",
"fields": {
"length": {
"type": "token_count",
"analyzer": "standard"
}
}
},
"content": {
"type": "text",
"fields": {
"length": {
"type": "token_count",
"analyzer": "standard"
}
}
}
}
}
}
Then, in order to find out the number of tokens, you can simply run a sum aggregation on the .length sub-field, like this:
POST web/_search
{
"size": 0,
"aggs": {
"title_tokens": {
"sum": {
"field": "title.length"
}
},
"content_tokens": {
"sum": {
"field": "content.length"
}
}
}
}
I am using data type called token_count It will calculate and store the count of tokens for each text. This count value can be utilized to get the token count of fields
PUT index18
{
"mappings": {
"properties": {
"title": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword"
},
"length": {
"type": "token_count",
"analyzer": "standard"
}
}
},
"content": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword"
},
"length": {
"type": "token_count",
"analyzer": "standard"
}
}
}
}
}
}
Data:
"hits" : [
{
"_index" : "index18",
"_type" : "_doc",
"_id" : "edJPtW0BVHM68p7X-Wlu",
"_score" : 1.0,
"_source" : {
"title" : "Mayor Isko"
}
},
{
"_index" : "index18",
"_type" : "_doc",
"_id" : "etJQtW0BVHM68p7XGmmr",
"_score" : 1.0,
"_source" : {
"title" : "Isko"
}
}
]
Query
GET index18/_search
{
"query": {"match_all": {}},
"aggs": {
"WordCount": {
"sum": {
"field": "title.length"
}
}
}
}
For example, if I have the following documents:
1. Casa Road
2. Jalan Casa
Say my query term is "cas"... on searching, both documents have same scores. I want the one with casa appearing earlier (i.e. document 1 here) and to rank first in my query output.
I am using an edgeNGram Analyzer. Also I am using aggregations so I cannot use the normal sorting that happens after querying.
You can use the Bool Query to boost the items that start with the search query:
{
"bool" : {
"must" : {
"match" : { "name" : "cas" }
},
"should": {
"prefix" : { "name" : "cas" }
},
}
}
I'm assuming the values you gave is in the name field, and that that field is not analyzed. If it is analyzed, maybe look at this answer for more ideas.
The way it works is:
Both documents will match the query in the must clause, and will receive the same score for that. A document won't be included if it doesn't match the must query.
Only the document with the term starting with cas will match the query in the should clause, causing it to receive a higher score. A document won't be excluded if it doesn't match the should query.
This might be a bit more involved, but it should work.
Basically, you need the position of the term within the text itself and, also, the number of terms from the text. The actual scoring is computed using scripts, so you need to enable dynamic scripting in elasticsearch.yml config file:
script.engine.groovy.inline.search: on
This is what you need:
a mapping that is using term_vector set to with_positions, and edgeNGram and a sub-field of type token_count:
PUT /test
{
"mappings": {
"test": {
"properties": {
"text": {
"type": "string",
"term_vector": "with_positions",
"index_analyzer": "edgengram_analyzer",
"search_analyzer": "keyword",
"fields": {
"word_count": {
"type": "token_count",
"store": "yes",
"analyzer": "standard"
}
}
}
}
}
},
"settings": {
"analysis": {
"filter": {
"name_ngrams": {
"min_gram": "2",
"type": "edgeNGram",
"max_gram": "30"
}
},
"analyzer": {
"edgengram_analyzer": {
"type": "custom",
"filter": [
"standard",
"lowercase",
"name_ngrams"
],
"tokenizer": "standard"
}
}
}
}
}
test documents:
POST /test/test/1
{"text":"Casa Road"}
POST /test/test/2
{"text":"Jalan Casa"}
the query itself:
GET /test/test/_search
{
"query": {
"bool": {
"must": [
{
"function_score": {
"query": {
"term": {
"text": {
"value": "cas"
}
}
},
"script_score": {
"script": "termInfo=_index['text'].get('cas',_POSITIONS);wordCount=doc['text.word_count'].value;if (termInfo) {for(pos in termInfo){return (wordCount-pos.position)/wordCount}};"
},
"boost_mode": "sum"
}
}
]
}
}
}
and the results:
"hits": {
"total": 2,
"max_score": 1.3715843,
"hits": [
{
"_index": "test",
"_type": "test",
"_id": "1",
"_score": 1.3715843,
"_source": {
"text": "Casa Road"
}
},
{
"_index": "test",
"_type": "test",
"_id": "2",
"_score": 0.8715843,
"_source": {
"text": "Jalan Casa"
}
}
]
}
I am using ElasticSearch to store the Tweets I receive from the Twitter Streaming API. Before storing them I'd like to apply an english stemmer to the Tweet content, and to do that I'm trying to use ElasticSearch analyzers with no luck.
This is the current template I am using:
PUT _template/twitter
{
"template": "139*",
"settings" : {
"index":{
"analysis":{
"analyzer":{
"english":{
"type":"custom",
"tokenizer":"standard",
"filter":["lowercase", "en_stemmer", "stop_english", "asciifolding"]
}
},
"filter":{
"stop_english":{
"type":"stop",
"stopwords":["_english_"]
},
"en_stemmer" : {
"type" : "stemmer",
"name" : "english"
}
}
}
}
},
"mappings": {
"tweet": {
"_timestamp": {
"enabled": true,
"store": true,
"index": "analyzed"
},
"_index": {
"enabled": true,
"store": true,
"index": "analyzed"
},
"properties": {
"geo": {
"properties": {
"coordinates": {
"type": "geo_point"
}
}
},
"text": {
"type": "string",
"analyzer": "english"
}
}
}
}
}
When I start the Streaming and the index is created, all the mappings I've defined seem to apply correctly, but the text is stored as it comes from Twitter, completely raw. The index metadata shows:
"settings" : {
"index" : {
"uuid" : "xIOkEcoySAeZORr7pJeTNg",
"analysis" : {
"filter" : {
"en_stemmer" : {
"type" : "stemmer",
"name" : "english"
},
"stop_english" : {
"type" : "stop",
"stopwords" : [
"_english_"
]
}
},
"analyzer" : {
"english" : {
"type" : "custom",
"filter" : [
"lowercase",
"en_stemmer",
"stop_english",
"asciifolding"
],
"tokenizer" : "standard"
}
}
},
"number_of_replicas" : "1",
"number_of_shards" : "5",
"version" : {
"created" : "1010099"
}
}
},
"mappings" : {
"tweet" : {
[...]
"text" : {
"analyzer" : "english",
"type" : "string"
},
[...]
}
}
What am I doing wrong? The analyzers seems to be applied correctly, but nothing is happening :/
Thank you!
PS: The search query I use to realize the analyzer is not being applied:
curl -XGET 'http://localhost:9200/_all/_search?pretty' -d '{
"query": {
"filtered": {
"query": {
"bool": {
"should": [
{
"query_string": {
"query": "_index:1397574496990"
}
}
]
}
},
"filter": {
"bool": {
"must": [
{
"match_all": {}
},
{
"exists": {
"field": "geo.coordinates"
}
}
]
}
}
}
},
"fields": [
"geo.coordinates",
"text"
],
"size": 50000
}'
This should return the stemmed text as one of the fields, but the response is:
{
"took": 29,
"timed_out": false,
"_shards": {
"total": 47,
"successful": 47,
"failed": 0
},
"hits": {
"total": 2,
"max_score": 0.97402453,
"hits": [
{
"_index": "1397574496990",
"_type": "tweet",
"_id": "456086643423068161",
"_score": 0.97402453,
"fields": {
"geo.coordinates": [
-118.21122533,
33.79349318
],
"text": [
"Happy turtle Tuesday ! The week is slowly crawling to Wednesday good morning everyone 🌊🐢🐢🐢☀️#turtles… http://t.co/wAVmcxnf76"
]
}
},
{
"_index": "1397574496990",
"_type": "tweet",
"_id": "456086701451259904",
"_score": 0.97333175,
"fields": {
"geo.coordinates": [
-81.017636,
33.998741
],
"text": [
"Tuesday is Twins Day over here, apparently (it's a far too often occurrence) #tuesdaytwinsday… http://t.co/Umhtp6SoX6"
]
}
}
]
}
}
The text field is exactly the same that came from Twitter (I'm using the streaming API). What I expect is the text fields stemmed, as the analyzer is applied.
Analyzers don't affect the way data is stored. So, no matter which analyzer you are using you will get the same text back from source and stored fields. Analyzer are applied when you search. So by searching for something like text:twin and finding records with the word Twins, you will know that stemmer was applied.