Unreachable command in a shell script code while installing Oh My Zsh - bash

Here is my sample1.sh:
#!/bin/bash
sh -c "$(curl -fsSL https://raw.github.com/robbyrussell/oh-my-zsh/master/tools/install.sh)"
echo "foo"
Output:
Here is my sample2.sh:
#!/bin/bash
rm -rf ~/.oh-my-zsh
rm ~/.zshrc
sh -c "$(curl -fsSL https://raw.github.com/robbyrussell/oh-my-zsh/master/tools/install.sh)"
echo "foo"
Output:
As you see, the only difference between above snippets are below lines:
rm -rf ~/.oh-my-zsh
rm ~/.zshrc
Question: why am I able to see foo, only when OMZ is already installed? What's so specific inside https://raw.github.com/robbyrussell/oh-my-zsh/master/tools/install.sh, that after it detects that OMZ does not exist and can be installed, after successful installation, it doesn't continue to reach my foo?
Obviously, that echo "foo" was just an example to highlight the general problem.
In the final built of the script, what I want to achieve is to simply enable some plugins once OMZ is installed by calling:
sed -i '' -e 's/^plugins=.*/plugins=(git, sublime)/' ~/.zshrc
This line works fine only when I trigger it manually. The problem is that it never calls sed once OMZ is installed. Thanks for pointing out, where is the problem that I don't understand.

Part of the install script for OMZ is to switch the current shell to sh with the line env zsh. I believe that this is basically causing your script to fork ZSH and never actually finish running. If you exit from the ZSH shell then it should continue as normal.

Oh-my-zsh will fork the current process. To fix, just cut it out of the script.
sh -c "$(curl -fsSL https://raw.github.com/robbyrussell/oh-my-zsh/master/tools/install.sh | sed "s/env zsh//g")"

As a workaround, you can use & and wait to run the install command in parallel and wait for its completion.
sh -c "$(curl -fsSL https://raw.github.com/ohmyzsh/ohmyzsh/master/tools/install.sh)" &
wait
echo "foo"

Thanks #mgild for the idea, that was exactly what I was looking for. Just one thing - the command should be:
sh -c "$(curl -fsSL https://raw.github.com/robbyrussell/oh-my-zsh/master/tools/install.sh | sed "s/env zsh.*//g")"
So that sed removes the whole and not just "env zsh" substring.

Related

Create and write systemd service from Shell script Failed [duplicate]

This question already has answers here:
How do I use sudo to redirect output to a location I don't have permission to write to? [closed]
(15 answers)
sudo cat << EOF > File doesn't work, sudo su does [duplicate]
(5 answers)
Closed 1 year ago.
I am trying to automate the addition of a repository source in my arch's pacman.conf file but using the echo command in my shell script. However, it fails like this:-
sudo echo "[archlinuxfr]" >> /etc/pacman.conf
sudo echo "Server = http://repo.archlinux.fr/\$arch" >> /etc/pacman.conf
sudo echo " " >> /etc/pacman.conf
-bash: /etc/pacman.conf: Permission denied
If I make changes to /etc/pacman.conf manually using vim, by doing
sudo vim /etc/pacman.conf
and quiting vim with :wq, everything works fine and my pacman.conf has been manually updated without "Permission denied" complaints.
Why is this so? And how do I get sudo echo to work? (btw, I tried using sudo cat too but that failed with Permission denied as well)
As #geekosaur explained, the shell does the redirection before running the command. When you type this:
sudo foo >/some/file
Your current shell process makes a copy of itself that first tries to open /some/file for writing, then if that succeeds it makes that file descriptor its standard output, and only if that succeeds does it execute sudo. This is failing at the first step.
If you're allowed (sudoer configs often preclude running shells), you can do something like this:
sudo bash -c 'foo >/some/file'
But I find a good solution in general is to use | sudo tee instead of > and | sudo tee -a instead of >>. That's especially useful if the redirection is the only reason I need sudo in the first place; after all, needlessly running processes as root is precisely what sudo was created to avoid. And running echo as root is just silly.
echo '[archlinuxfr]' | sudo tee -a /etc/pacman.conf >/dev/null
echo 'Server = http://repo.archlinux.fr/$arch' | sudo tee -a /etc/pacman.conf >/dev/null
echo ' ' | sudo tee -a /etc/pacman.conf >/dev/null
I added > /dev/null on the end because tee sends its output to both the named file and its own standard output, and I don't need to see it on my terminal. (The tee command acts like a "T" connector in a physical pipeline, which is where it gets its name.) And I switched to single quotes ('...') instead of doubles ("...") so that everything is literal and I didn't have to put a backslash in front of the $ in $arch. (Without the quotes or backslash, $arch would get replaced by the value of the shell parameter arch, which probably doesn't exist, in which case the $arch is replaced by nothing and just vanishes.)
So that takes care of writing to files as root using sudo. Now for a lengthy digression on ways to output newline-containing text in a shell script. :)
To BLUF it, as they say, my preferred solution would be to just feed a here-document into the above sudo tee command; then there is no need for cat or echo or printf or any other commands at all. The single quotation marks have moved to the sentinel introduction <<'EOF', but they have the same effect there: the body is treated as literal text, so $arch is left alone:
sudo tee -a /etc/pacman.conf >/dev/null <<'EOF'
[archlinuxfr]
Server = http://repo.archlinux.fr/$arch
EOF
But while that's how I'd do it, there are alternatives. Here are a few:
You can stick with one echo per line, but group all of them together in a subshell, so you only have to append to the file once:
(echo '[archlinuxfr]'
echo 'Server = http://repo.archlinux.fr/$arch'
echo ' ') | sudo tee -a /etc/pacman.conf >/dev/null
If you add -e to the echo (and you're using a shell that supports that non-POSIX extension), you can embed newlines directly into the string using \n:
# NON-POSIX - NOT RECOMMENDED
echo -e '[archlinuxfr]\nServer = http://repo.archlinux.fr/$arch\n ' |
sudo tee -a /etc/pacman.conf >/dev/null
But as it says above, that's not POSIX-specified behavior; your shell might just echo a literal -e followed by a string with a bunch of literal \ns instead. The POSIX way of doing that is to use printf instead of echo; it automatically treats its argument like echo -e does, but doesn't automatically append a newline at the end, so you have to stick an extra \n there, too:
printf '[archlinuxfr]\nServer = http://repo.archlinux.fr/$arch\n \n' |
sudo tee -a /etc/pacman.conf >/dev/null
With either of those solutions, what the command gets as an argument string contains the two-character sequence \n, and it's up to the command program itself (the code inside printf or echo) to translate that into a newline. In many modern shells, you have the option of using ANSI quotes $'...', which will translate sequences like \n into literal newlines before the command program ever sees the string. That means such strings work with any command whatsoever, including plain old -e-less echo:
echo $'[archlinuxfr]\nServer = http://repo.archlinux.fr/$arch\n ' |
sudo tee -a /etc/pacman.conf >/dev/null
But, while more portable than echo -e, ANSI quotes are still a non-POSIX extension.
And again, while those are all options, I prefer the straight tee <<EOF solution above.
The problem is that the redirection is being processed by your original shell, not by sudo. Shells are not capable of reading minds and do not know that that particular >> is meant for the sudo and not for it.
You need to:
quote the redirection ( so it is passed on to sudo)
and use sudo -s (so that sudo uses a shell to process the quoted redirection.)
http://www.innovationsts.com/blog/?p=2758
As the instructions are not that clear above I am using the instructions from that blog post. With examples so it is easier to see what you need to do.
$ sudo cat /root/example.txt | gzip > /root/example.gz
-bash: /root/example.gz: Permission denied
Notice that it’s the second command (the gzip command) in the pipeline that causes the error. That’s where our technique of using bash with the -c option comes in.
$ sudo bash -c 'cat /root/example.txt | gzip > /root/example.gz'
$ sudo ls /root/example.gz
/root/example.gz
We can see form the ls command’s output that the compressed file creation succeeded.
The second method is similar to the first in that we’re passing a command string to bash, but we’re doing it in a pipeline via sudo.
$ sudo rm /root/example.gz
$ echo "cat /root/example.txt | gzip > /root/example.gz" | sudo bash
$ sudo ls /root/example.gz
/root/example.gz
sudo bash -c 'echo "[archlinuxfr]" >> /etc/pacman.conf'
STEP 1 create a function in a bash file (write_pacman.sh)
#!/bin/bash
function write_pacman {
tee -a /etc/pacman.conf > /dev/null << 'EOF'
[archlinuxfr]
Server = http://repo.archlinux.fr/\$arch
EOF
}
'EOF' will not interpret $arch variable.
STE2 source bash file
$ source write_pacman.sh
STEP 3 execute function
$ write_pacman
append files (sudo cat):
cat <origin-file> | sudo tee -a <target-file>
append echo to file (sudo echo):
echo <origin> | sudo tee -a <target-file>
(EXTRA) disregard the ouput:
echo >origin> | sudo tee -a <target-file> >/dev/null

why is executing a command in the sh terminal failing

I am using ubuntu.
When I do this from the terminal
echo $SHELL
I got /bin/bash
and then when I do
echo "`$SHELL -c 'echo $BASH_VERSION'`"
I got 4.4.20(1)-release
Then, I try to do the same thing inside a particular docker container I am running, but as you will see this has the sh terminal not the bash terminal
so from that container
echo $SHELL
I got /bin/sh
that I have read is a link to dash
then with
echo $BASH_VERSION
I got
4.3.48(1)-release
so I do
echo "`$SHELL -c 'echo $BASH_VERSION'`"
and I got nothing.
Can someone explain me what is happening?
How can you run a sh terminal in ubuntu
Any aditional resource to understand shells is welcome too
I specially don't understand why when doing the echo $BASH_VERSION I got something but then with the latter I got nothing if the shell is the same

What does `ruby -e "$(curl url)"` means?

What does this line from Homebrew mean?
/usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)"
I understand -e will include ruby code in command but I don't get the $() part. What's the dollar sign bracket doing here?
And very importantly, where can I find the documentation for this?
$(...) is Bash command substitution. It happens before the command is executed; it executes the command inside the parentheses and substitutes its output. For example,
echo "There are $(ls | wc -l) files in this directory"
will first execute ls | wc -l which will output e.g. 17; then echo "There are 17 files in this directory".
curl is a command-line utility that fetches the contents at an URL and outputs that content, by default. Thus, /usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install) will first download the contents of https://raw.githubusercontent.com/Homebrew/install/master/install , then substitute it into the command line as the parameter of the -e option. Ruby will then execute it as Ruby code.
Your question is unrelated to Ruby; it is a shell question. Assuming that the shell running this command is either bash or ksh or Zsh, these shells replace an expression of the form $(COMMAND) by the standard output of this command. Hence in your case, the standard output of the curl command is executed as Ruby code.

where did my environment variable go?

I am trying to use an environment variable in a bash script that needs to run as sudo with source.
I have the following file (my_file.sh)
echo "this is DOMAIN = $DOMAIN"
I have the DOMAIN environment variable in my session..
and now I need to run
sudo -E bash -c "source ./my_file.sh"
but the output does not display the value for $DOMAIN. instead it is empty.
if I change the command to be
sudo -E bash -c "echo $DOMAIN"
I see the correct value..
what am I doing wrong?
With the command line:
sudo -E bash -c "source ./my_file.sh"
you are running a script that may refer to environment variables that would need to be exported from a parent shell to be visible.
On the other hand:
sudo -E bash -c "echo $DOMAIN"
expands the value of $DOMAIN in the parent shell, not inside your sudo line.
To demonstrate this, try your "working" solution with single quotes:
sudo -E bash -c 'echo $DOMAIN'
And to make things go, try exporting the variable:
export DOMAIN
sudo -E bash -c "source ./my_file.sh"
Or alternately, pass $DOMAIN on the command line:
sudo -E bash -c "source ./my_file.sh $DOMAIN"
And have your script refer to $1.

Why sudo cat gives a Permission denied but sudo vim works fine? [duplicate]

This question already has answers here:
How do I use sudo to redirect output to a location I don't have permission to write to? [closed]
(15 answers)
sudo cat << EOF > File doesn't work, sudo su does [duplicate]
(5 answers)
Closed 1 year ago.
I am trying to automate the addition of a repository source in my arch's pacman.conf file but using the echo command in my shell script. However, it fails like this:-
sudo echo "[archlinuxfr]" >> /etc/pacman.conf
sudo echo "Server = http://repo.archlinux.fr/\$arch" >> /etc/pacman.conf
sudo echo " " >> /etc/pacman.conf
-bash: /etc/pacman.conf: Permission denied
If I make changes to /etc/pacman.conf manually using vim, by doing
sudo vim /etc/pacman.conf
and quiting vim with :wq, everything works fine and my pacman.conf has been manually updated without "Permission denied" complaints.
Why is this so? And how do I get sudo echo to work? (btw, I tried using sudo cat too but that failed with Permission denied as well)
As #geekosaur explained, the shell does the redirection before running the command. When you type this:
sudo foo >/some/file
Your current shell process makes a copy of itself that first tries to open /some/file for writing, then if that succeeds it makes that file descriptor its standard output, and only if that succeeds does it execute sudo. This is failing at the first step.
If you're allowed (sudoer configs often preclude running shells), you can do something like this:
sudo bash -c 'foo >/some/file'
But I find a good solution in general is to use | sudo tee instead of > and | sudo tee -a instead of >>. That's especially useful if the redirection is the only reason I need sudo in the first place; after all, needlessly running processes as root is precisely what sudo was created to avoid. And running echo as root is just silly.
echo '[archlinuxfr]' | sudo tee -a /etc/pacman.conf >/dev/null
echo 'Server = http://repo.archlinux.fr/$arch' | sudo tee -a /etc/pacman.conf >/dev/null
echo ' ' | sudo tee -a /etc/pacman.conf >/dev/null
I added > /dev/null on the end because tee sends its output to both the named file and its own standard output, and I don't need to see it on my terminal. (The tee command acts like a "T" connector in a physical pipeline, which is where it gets its name.) And I switched to single quotes ('...') instead of doubles ("...") so that everything is literal and I didn't have to put a backslash in front of the $ in $arch. (Without the quotes or backslash, $arch would get replaced by the value of the shell parameter arch, which probably doesn't exist, in which case the $arch is replaced by nothing and just vanishes.)
So that takes care of writing to files as root using sudo. Now for a lengthy digression on ways to output newline-containing text in a shell script. :)
To BLUF it, as they say, my preferred solution would be to just feed a here-document into the above sudo tee command; then there is no need for cat or echo or printf or any other commands at all. The single quotation marks have moved to the sentinel introduction <<'EOF', but they have the same effect there: the body is treated as literal text, so $arch is left alone:
sudo tee -a /etc/pacman.conf >/dev/null <<'EOF'
[archlinuxfr]
Server = http://repo.archlinux.fr/$arch
EOF
But while that's how I'd do it, there are alternatives. Here are a few:
You can stick with one echo per line, but group all of them together in a subshell, so you only have to append to the file once:
(echo '[archlinuxfr]'
echo 'Server = http://repo.archlinux.fr/$arch'
echo ' ') | sudo tee -a /etc/pacman.conf >/dev/null
If you add -e to the echo (and you're using a shell that supports that non-POSIX extension), you can embed newlines directly into the string using \n:
# NON-POSIX - NOT RECOMMENDED
echo -e '[archlinuxfr]\nServer = http://repo.archlinux.fr/$arch\n ' |
sudo tee -a /etc/pacman.conf >/dev/null
But as it says above, that's not POSIX-specified behavior; your shell might just echo a literal -e followed by a string with a bunch of literal \ns instead. The POSIX way of doing that is to use printf instead of echo; it automatically treats its argument like echo -e does, but doesn't automatically append a newline at the end, so you have to stick an extra \n there, too:
printf '[archlinuxfr]\nServer = http://repo.archlinux.fr/$arch\n \n' |
sudo tee -a /etc/pacman.conf >/dev/null
With either of those solutions, what the command gets as an argument string contains the two-character sequence \n, and it's up to the command program itself (the code inside printf or echo) to translate that into a newline. In many modern shells, you have the option of using ANSI quotes $'...', which will translate sequences like \n into literal newlines before the command program ever sees the string. That means such strings work with any command whatsoever, including plain old -e-less echo:
echo $'[archlinuxfr]\nServer = http://repo.archlinux.fr/$arch\n ' |
sudo tee -a /etc/pacman.conf >/dev/null
But, while more portable than echo -e, ANSI quotes are still a non-POSIX extension.
And again, while those are all options, I prefer the straight tee <<EOF solution above.
The problem is that the redirection is being processed by your original shell, not by sudo. Shells are not capable of reading minds and do not know that that particular >> is meant for the sudo and not for it.
You need to:
quote the redirection ( so it is passed on to sudo)
and use sudo -s (so that sudo uses a shell to process the quoted redirection.)
http://www.innovationsts.com/blog/?p=2758
As the instructions are not that clear above I am using the instructions from that blog post. With examples so it is easier to see what you need to do.
$ sudo cat /root/example.txt | gzip > /root/example.gz
-bash: /root/example.gz: Permission denied
Notice that it’s the second command (the gzip command) in the pipeline that causes the error. That’s where our technique of using bash with the -c option comes in.
$ sudo bash -c 'cat /root/example.txt | gzip > /root/example.gz'
$ sudo ls /root/example.gz
/root/example.gz
We can see form the ls command’s output that the compressed file creation succeeded.
The second method is similar to the first in that we’re passing a command string to bash, but we’re doing it in a pipeline via sudo.
$ sudo rm /root/example.gz
$ echo "cat /root/example.txt | gzip > /root/example.gz" | sudo bash
$ sudo ls /root/example.gz
/root/example.gz
sudo bash -c 'echo "[archlinuxfr]" >> /etc/pacman.conf'
STEP 1 create a function in a bash file (write_pacman.sh)
#!/bin/bash
function write_pacman {
tee -a /etc/pacman.conf > /dev/null << 'EOF'
[archlinuxfr]
Server = http://repo.archlinux.fr/\$arch
EOF
}
'EOF' will not interpret $arch variable.
STE2 source bash file
$ source write_pacman.sh
STEP 3 execute function
$ write_pacman
append files (sudo cat):
cat <origin-file> | sudo tee -a <target-file>
append echo to file (sudo echo):
echo <origin> | sudo tee -a <target-file>
(EXTRA) disregard the ouput:
echo >origin> | sudo tee -a <target-file> >/dev/null

Resources