I'm stuck with this problem
{<M> | M is a TM that accepts 3 words}
I know how to solve |L(M)|>3 or |L(M)|<3 but when it comes to |L(M)|=3 , I don't know how to proceed!
How about using the fact that |L(M)|=3 means that |L(M)|>2 AND |L(M)|<4. Or the fact that with |L(M)|=3 and |L(M)|>3 you could decide |L(M)|>2. These woudl use the things you say you know how to do.
And, of course, if you are allowed to use Rice's theorem that Willem has mentioned, then the answer is pretty immediate.
According to the non-monotonic property of turning machine by Rice Theorem.
Let's take a case:
we can say (a language accepted by turning machine) T{yes}={0,10,11} and (a language not accepted by turning machine) T{no}={0,10,11,1} so here Tyes is a proper subset of Tno. Hence this problem is undecidable.
Related
I'm reading a note about the definition of algorithm, it has two requirements that I don't know what's the differences between them
Definiteness: Every instruction should be clear and unambiguous. (I found a source with exactly the same statement)
From the resource I have there are 5 requirements: Input, Output, Definiteness, Finiteness, Effectiveness. I can understand the other 4 except the Definiteness. Can anyone provide some better definition if the above is not precise?
From the above I only suspect that there are at least two subtleties should be considered...
For conclusion from answers below: definiteness = defined(clear) + only_one(unambiguous).
Algorithm should be clear and unambiguous. Each of its steps (or phases), and their inputs/outputs should be clear and must lead to only one meaning.
For example, if one step is to add two integers, we must define both “integers” as well as the “add” operation: we cannot for example use the same symbol to mean addition in one place and multiplication somewhere else.
If presented to an educated human, the text should allow him to simulate execution by hand in exactly the way you had in mind (same steps taken, same results obtained).
When you don't quite understand the definition of a term provided by some author, it's often helpful to look for other definitions of it. I especially like the one for "definite" from wiktionary.org:
Free from any doubt.
In this context, clear becomes understandable, and unambiguous becomes with a single meaning.
It just means that instructions in an algorithm should have one and only one interpretation. Moreover, the interpretation should be obvious.
A statement like "Repeat steps 1 to 4 a few times" does not fit the criteria as "few times" can mean different number of tries to different people.
On the other hand, a statement like "Repeat steps 1 to 4 until x is equal to y" where x and y are some parameters in the algorithm is indeed clear and unambiguous.
I am creating a list with the elements of another list. I want to make sure about two things. First that the list is made from another list and second the size of list changes. Is the following representation good enough ?
n ∈ {2,3,4}
new_list = [list[1], ... , list[n]]
How can I represent algorithmically that I create the "new_list" with elements of "list" without the dots ?
There is no standard of pseudo-code. (I am glad there isn't.)
Standards for pseudo code?
https://cs.stackexchange.com/questions/42226/the-convention-for-declaring-arrays-in-pseudocode
Therefore, I think it is vastly up to you to imagine what is good/bad.
Here are some rough conventions, but none address what you asked directly :-
http://www.cs.princeton.edu/courses/archive/spr11/cos116/handouts/Pseudocode_Reference.pdf
http://www.dreamincode.net/forums/topic/304088-question-in-declaring-and-using-arrays-in-writing-pseudocode/
http://cs.brown.edu/courses/cs016/static/files/docs/PseudocodeStandards.pdf
Therefore, I will use my opinion : the pseudo-code you show looks OK for me.
Just be sure that your article uses consistent notation.
(use same symbol/pattern to denote the same thing)
I hope that this solution is good enough for you.
This is a somewhat silly example but I'm trying to keep the concept pretty basic for better understanding. Say I have the following unary relations:
person(steve).
person(joe).
fruit(apples).
fruit(pears).
fruit(mangos).
And the following binary relations:
eats(steve, apples).
eats(steve, pears).
eats(joe, mangos).
I know that querying eats(steve, F). will return all the fruit that steve eats (apples and pears). My problem is that I want to get all of the fruits that Steve doesn't eat. I know that this: \+eats(steve,F) will just return "no" because F can't be bound to an infinite number of possibilities, however I would like it to return mangos, as that's the only existing fruit possibility that steve doesn't eat. Is there a way to write this that would produce the desired result?
I tried this but no luck here either: \+eats(steve,F), fruit(F).
If a better title is appropriate for this question I would appreciate any input.
Prolog provides only a very crude form of negation, in fact, (\+)/1 means simply "not provable at this point in time of the execution". So you have to take into account the exact moment when (\+)/1 is executed. In your particular case, there is an easy way out:
fruit(F), \+eats(steve,F).
In the general case, however, this is far from being fixed easily. Think of \+ X = Y, see this answer.
Another issue is that negation, even if used properly, will introduce non-monotonic properties into your program: By adding further facts for eats/2 less might be deduced. So unless you really want this (as in this example where it does make sense), avoid the construct.
I'm running some Lattice proofs through Prover9/Mace4. I'm using a non-standard axiomatization of the lattice join operation, from which it is not immediately obvious that the join is commutative, associative and idempotent. (I can get Prover9 to prove that it is -- eventually.)
I know that Prover9 looks for those properties to help it search faster. I've tried putting those properties in the Additional Input section (I'm running the GUI version 0.5), with
formulas(hints).
x v y = y v x.
% etc
end_of_list.
Q1: Is this the way to get it to look at hints?
Q2: Is there a good place to look for help on speeding up proofs/tips and tricks?
(If I can get this to work, there are further operators I'd like to give hints for.)
For ref, my axioms are (bi-lattice with only one primitive operation):
x ^ y = y ^ x. % lattice meet
x ^ x = x.
(x ^ y) ^ z = x ^ (y ^ z).
x ^ (x v y) = x. % standard absorption for join
x ^ z = x & y ^ z = y <-> z ^ (x v y) = (x v y).
% non-standard absorption
(EDIT after DougS's answer posted.)
Wow! Thank you. Orders-of-magnitude speed-up.
Some follow-on q's if I might ...
Q3: The generated hints seem to include all of the initial axioms plus the goal -- is that what I should expect? (Presumably hence your comment about not needing all of the hints. I've certainly experienced that removing axioms makes a proof go faster.)
Q4: What if I add hints that (as it turns out) aren't justified by the axioms? Are they ignored?
Q5: What if I add hints that contradict the axioms? (From a few trials, this doesn't make Prover9 mis-infer.)
Q6: For a proof (attempt) that times out, is there any way to retrieve the formulas inferred so far and recycle them for hints to speed up the next attempt? (I have a feeling in my waters that this would drag in some sort of fallacy, despite what I've seen re Q3 and Q4.)
Q3: Yes, you should expect the axiom(s) and the goal(s) included as hints. Both of them can serve as useful. I more meant that you might see something like "$F" as a hint doesn't seem to add much to me, and that hints also lead you down a particular path first which can make it more difficult or easier to find shorter proofs. However, if you just want a faster proof, then using all of the suggested hints probably comes as the way to go.
Q4: Hints do NOT need to come as deducible from the axioms.
Q5: Hints can contradict the axioms, sure.
The manual says "A derived clause matches a hint if it subsumes the hint.
...
In short, the default value of the hints_part parameter says to select clauses that match hints (lightest first) whenever any are available."
"Clause C subsumes clause D if the variables of C can be instantiated in such a way that it becomes a subclause of D. If C subsumes D, then D can be discarded, because it is weaker than or equivalent to C. (There are some proof procedures that require retention of subsumed clauses.)"
So let's say that you put
1. x ^((y^z) V v)=x V y as a hint.
Then if Prover9 generates
2. x ^ ((x^x) V v)=x V x
x ^ ((x^x) V v)=x V x will get selected whenever it's available, since it matches the hint.
This explanation isn't complete, because I'm not exactly sure how "subclause" gets defined.
Still, instead of generating formulas with the original axioms and whatever procedure Prover9 uses to generate formulas, formulas that match hints will get put to the front of the list for generating formulas. This can pick up the speed of the program, but from what I've read about some other problems it seems that many difficult problems basically wouldn't have gotten proved automatically if it weren't for things like hints, weighting, and other strategies.
Q6: I'm not sure which formulas you're referring to. In Prover9, of course, you can click on "show output" and look through the dozens of formulas it has generated. You could also set lemmas you think of as useful as additional goals, and then use Prooftrans to generate hints from those lemmas to use as hints on the next run. Or you could use the steps of the proofs of those lemmas as hints for the next run. There's no fallacy in terms of reasoning if you use steps of those proofs as hints, or the hints suggested by Prooftrans, because hints don't actually add any assumptions to the initial set. The hint mechanism works, at least according to my somewhat rough understanding, by changing the search procedure to use a clause that matches a hint once we have something which matches a hint (that is, the program has to deduce something that matches a hint, and only then can what matches the hint get used).
Q1: Yes, that should work for hints. But, to better test it, take the proof you have, and then use the "reformat" option and check the "hints" part. Then copy and paste all of those hints into your "formulas(hints)." list. (well you don't necessarily need them all... and using only some of them might lead to a shorter proof if it exists, but I digress). Then run the proof again, and if it runs like my proofs in propositional calculi with hints do, you'll get the proof "in an instant".
Just in case... you'll need to click on the "additional input" tab, and put your hint list there.
Q2: For strategies, the Prover9 manual has useful information on weighting, hints, and semantic guidance (I haven't tried semantic guidance). You might also want to see Bob Veroff's page (some of his work got done in OTTER, but the programs are similar). There also exists useful information Larry Wos's notebooks, as well as Dr. Wos's published work, though all of Wos's recent work has gotten done using OTTER (again, the programs are similar).
I am a Mechanical engineer with a computer scientist question. This is an example of what the equations I'm working with are like:
x = √((y-z)×2/r)
z = f×(L/D)×(x/2g)
f = something crazy with x in it
etc…(there are more equations with x in it)
The situation is this:
I need r to find x, but I need x to find z. I also need x to find f which is a part of finding z. So I guess a value for x, and then I use that value to find r and f. Then I go back and use the value I found for r and f to find x. I keep doing this until the guess and the calculated are the same.
My question is:
How do I get the computer to do this? I've been using mathcad, but an example in another language like C++ is fine.
The very first thing you should do faced with iterative algorithms is write down on paper the sequence that will result from your idea:
Eg.:
x_0 = ..., f_0 = ..., r_0 = ...
x_1 = ..., f_1 = ..., r_1 = ...
...
x_n = ..., f_n = ..., r_n = ...
Now, you have an idea of what you should implement (even if you don't know how). If you don't manage to find a closed form expression for one of the x_i, r_i or whatever_i, you will need to solve one dimensional equations numerically. This will imply more work.
Now, for the implementation part, if you never wrote a program, you should seriously ask someone live who can help you (or hire an intern and have him write the code). We cannot help you beginning from scratch with, eg. C programming, but we are willing to help you with specific problems which should arise when you write the program.
Please note that your algorithm is not guaranteed to converge, even if you strongly think there is a unique solution. Solving non linear equations is a difficult subject.
It appears that mathcad has many abstractions for iterative algorithms without the need to actually implement them directly using a "lower level" language. Perhaps this question is better suited for the mathcad forums at:
http://communities.ptc.com/index.jspa
If you are using Mathcad, it has the functionality built in. It is called solve block.
Start with the keyword "given"
Given
define the guess values for all unknowns
x:=2
f:=3
r:=2
...
define your constraints
x = √((y-z)×2/r)
z = f×(L/D)×(x/2g)
f = something crazy with x in it
etc…(there are more equations with x in it)
calculate the solution
find(x, y, z, r, ...)=
Check Mathcad help or Quicksheets for examples of the exact syntax.
The simple answer to your question is this pseudo-code:
X = startingX;
lastF = Infinity;
F = 0;
tolerance = 1e-10;
while ((lastF - F)^2 > tolerance)
{
lastF = F;
X = ?;
R = ?;
F = FunctionOf(X,R);
}
This may not do what you expect at all. It may give a valid but nonsense answer or it may loop endlessly between alternate wrong answers.
This is standard substitution to convergence. There are more advanced techniques like DIIS but I'm not sure you want to go there. I found this article while figuring out if I want to go there.
In general, it really pays to think about how you can transform your problem into an easier problem.
In my experience it is better to pose your problem as a univariate bounded root-finding problem and use Brent's Method if you can
Next worst option is multivariate minimization with something like BFGS.
Iterative solutions are horrible, but are more easily solved once you think of them as X2 = f(X1) where X is the input vector and you're trying to reduce the difference between X1 and X2.
As the commenters have noted, the mathematical aspects of your question are beyond the scope of the help you can expect here, and are even beyond the help you could be offered based on the detail you posted.
However, I think that even if you understood the mathematics thoroughly there are computer science aspects to your question that should be addressed.
When you write your code, try to make organize it into functions that depend only upon the parameters you are passing in to a subroutine. So write a subroutine that takes in values for y, z, and r and returns you x. Make another that takes in f,L,D,G and returns z. Now you have testable routines that you can check to make sure they are computing correctly. Check the input values to your routines in the routines - for instance in computing x you will get a divide by 0 error if you pass in a 0 for r. Think about how you want to handle this.
If you are going to solve this problem interatively you will need a method that will decide, based on the results of one iteration, what the values for the next iteration will be. This also should be encapsulated within a subroutine. Now if you are using a language that allows only one value to be returned from a subroutine (which is most common computation languages C, C++, Java, C#) you need to package up all your variables into some kind of data structure to return them. You could use an array of reals or doubles, but it would be nicer to choose to make an object and then you can reference the variables by their name and not their position (less chance of error).
Another aspect of iteration is knowing when to stop. Certainly you'll do so when you get a solution that converges. Make this decision into another subroutine. Now when you need to change the convergence criteria there is only one place in the code to go to. But you need to consider other reasons for stopping - what do you do if your solution starts diverging instead of converging? How many iterations will you allow the run to go before giving up?
Another aspect of iteration of a computer is round-off error. Mathematically 10^40/10^38 is 100. Mathematically 10^20 + 1 > 10^20. These statements are not true in most computations. Your calculations may need to take this into account or you will end up with numbers that are garbage. This is an example of a cross-cutting concern that does not lend itself to encapsulation in a subroutine.
I would suggest that you go look at the Python language, and the pythonxy.com extensions. There are people in the associated forums that would be a good resource for helping you learn how to do iterative solving of a system of equations.