How to solve SPOJ : SCALE using binary search? - algorithm

http://www.spoj.com/problems/SCALE/
I am trying to do it using recursion but getting TLE.
The tags of the problem say BINARY SEARCH.
How can one do it using binary search ?
Thanx in advance.

First thing to notice here is that if you had two weights of each size instead of one, then the problem would be quite trivial, as we we would only need to represent X in its base 3 representation and take corresponding number of weights. For, example if X=21 then we could take two times P_3 and one time P_2, and put those into another scale.
Now let's try to make something similar using the fact that we can add to both scales (including the one where X is placed):
Assume that X <= P_1+P_2+...+P_n, that would mean that X <= P_n + (P_n-1)/2 (easy to understand why). Therefore, X + P_(n-1) + P_(n-2)+...+P_1 < 2*P_n.
(*) What that means is that if we add some of the weights from 1 to n-1 to same scale as X, then the number on that scale still does
not have 2 in its n-th rightmost digit (either 0 or 1).
From now on assume that digit means a digit of a number in its base-3 representation (but it can temporarily become larger than 2 :P ). Now lets denote the total weight of first scale (where X is placed) as A=X and the other scale is B=0 and our goal is to make them equal (both A and B will change as we will make our progress) .
Let's iterate through all digits of the A from smallest to largest (leftmost). If the current digit index is i and it:
Equals to 0 then just ignore and proceed further
Equals to 1 then we place weight P_i=3^(i-1) on scale B.
Equals to 2 then we add P_i=3^(i-1) to scale A. Note that it would result in the increase of the digit (i+1).
Equals to 3 (yes this case is possible, if both current and previous digit were 2) add 1 to digit at index i+1 and go further (no weights are added to any scale).
Due to (*) obviously the procedure will run correctly (as the last digit will be equal to 1 in A), as we will choose only one weight from the set and place them correctly, and obviously the numbers A and B will be equal after the procedure is complete.
Now second case X > P_1+P_2+...+P_n. Obviously we cannot balance even if we place all weights on the second scale.
This completes the proof and shows when it is possible and the way how to place the weights to both scales to equalise them.
EDIT:
C++ code which I successfully submitted on SPOJ just now https://ideone.com/tbB7Ve

The solution to this problem is quite trivial. The idea is the same as #Yerken's answer, but expressed in a bit different way:
Only the first weight has a mass not divisible by 3. So the first weight is the only one has effect on balancing mod 3 property of the 2 scales:
If X mod 3 == 0, the first weight must not be used
If X mod 3 == 1, the first weight must be on scale B (the currently empty one)
If X mod 3 == 2, the first weight must be on scale A
Subtract both scales by weight(B) --> solution doesn't change, and now weight(A) is divisible by 3 while weight(B) == 0
Set X' = weight(A)/3 and divide every weights Pi by 3 ==> Solution doesn't change, and now it's the same problem with N' = N-1 and X' = (X+1)/3
pseudo-code:
listA <- empty
listB <- empty
for i = 1 to N {
if (X == 0) break for loop; // done!
if (X mod 3 == 1) then push i to listB;
if (X mod 3 == 2) then push i to listA;
X = (X + 1)/3; // integer division
}
hasSolution <- (X == 0)
C++ code: http://ideone.com/LXLGmE

Related

Towers of Hanoi - Bellman equation solution

I have to implement an algorithm that solves the Towers of Hanoi game for k pods and d rings in a limited number of moves (let's say 4 pods, 10 rings, 50 moves for example) using Bellman dynamic programming equation (if the problem is solvable of course).
Now, I understand the logic behind the equation:
where V^T is the objective function at time T, a^0 is the action at time 0, x^0 is the starting configuration, H_0 is cumulative gain f(x^0, a^0)=x^1.
The cardinality of the state space is $k^d$ and I get that a good representation for a state is a number in base k: d digits that can go from 0 to k-1. Each digit represents a ring and the digit can go from 0 to k-1, that are the labels of the k rings.
I want to minimize the number of moves for going from the initial configuration (10 rings on the first pod) to the end one (10 rings on the last pod).
What I don't get is: how do I write my objective function?
The first you need to do is choose a reward function H_t(s,a) which will define you goal. Once this function is chosen, the (optimal) value function is defined and all you have to do is compute it.
The idea of dynamic programming for the Bellman equation is that you should compute V_t(s) bottom-up: you start with t=T, then t=T-1 and so on until t=0.
The initial case is simply given by:
V_T(s) = 0, ∀s
You can compute V_{T-1}(x) ∀x from V_T:
V_{T-1}(x) = max_a [ H_{T-1}(x,a) ]
Then you can compute V_{T-2}(x) ∀s from V_{T-1}:
V_{T-2}(x) = max_a [ H_{T-2}(x,a) + V_{T-1}(f(x,a)) ]
And you keep on computing V_{t-1}(x) ∀s from V_{t}:
V_{t-1}(x) = max_a [ H_{t-1}(x,a) + V_{t}(f(x,a)) ]
until you reach V_0.
Which gives the algorithm:
forall x:
V[T](x) ← 0
for t from T-1 to 0:
forall x:
V[t](x) ← max_a { H[t](x,a) + V[t-1](f(x,a)) }
What actually was requested was this:
def k_hanoi(npods,nrings):
if nrings == 1 and npods > 1: #one remaining ring: just one move
return 1
if npods == 3:
return 2**nrings - 1 #optimal solution with 3 pods take 2^d -1 moves
if npods > 3 and nrings > 0:
sol = []
for pivot in xrange(1, nrings): #loop on all possible pivots
sol.append(2*k_hanoi(npods, pivot)+k_hanoi(npods-1, nrings-pivot))
return min(sol) #minimization on pivot
k = 4
d = 10
print k_hanoi(k, d)
I think it is the Frame algorithm, with optimization on the pivot chosen to divide the disks in two subgroups. I also think someone demonstrated this is optimal for 4 pegs (in 2014 or something like that? Not sure btw) and conjectured to be optimal for more than 4 pegs. The limitation on the number of moves can be implemented easily.
The value function in this case was the number of steps needed to go from the initial configuration to the ending one and it needed be minimized. Thank you all for the contribution.

How to efficiently detect a tie early in m,n,k-game (generalized tic-tac-toe)?

I'm implementing an m,n,k-game, a generalized version of tic-tac-toe, where m is the number of rows, n is the number of columns and k is the number of pieces that a player needs to put in a row to win. I have implemented a check for a win, but I haven't figured out a satisfactory way to check before the board is full of pieces, if no player can win the game. In other words, there might be empty slots on the board, but they cannot be filled in such a way that one player would win.
My question is, how to check this efficiently? The following algorithm is the best that I can think of. It checks for two conditions:
A. Go over all board positions in all 4 directions (top to bottom, right to left, and both diagonal directions). If say k = 5, and 4 (= k-1) consecutive empty slots are found, stop checking and report "no tie". This doesn't take into account for example the following situation:
OX----XO (Example 1)
where a) there are 4 empty consecutive slots (-) somewhere between two X's, b) next it is O's turn, c) there are less than four other empty positions on the board and no player can win by putting pieces to those, and d) it is not possible to win in any other direction than horizontally in the shown slots either. Now we know that it is a tie because O will eventually block the last winning possibility, but erroneously it is not reported yet because there are four consecutive empty slots. That would be ok (but not great). Checking this condition gives a good speed-up at the beginning when the checking algorithm usually finds such a case early, but it gets slower as more pieces are put on the board.
B. If this k-1-consecutive-empty-slots-condition isn't met, the algorithm would check the slots again consecutively in all 4 directions. Suppose we are currently checking from left to right. If at some point an X is encountered and it was preceded by an O or - (empty slot) or a board border, then start counting the number of consecutive X's and empty slots, counting in this first encountered X. If one can count to 5, then one knows it is possible for X to win, and "no tie" is reported. If an O preceded by an X is encountered before 5 consecutive X's, then X cannot win in those 5 slots from left to right starting from where we started counting. For example:
X-XXO (Example 2)
12345
Here we started checking at position 1, counted to 4, and encountered an O. In this case, one would continue from the encountered O in the same way, trying to find 5 consecutive O's or empty slots this time. In another case when counting X's or empty slots, an O preceded by one or more empty slots is encountered, before counting to 5. For example:
X-X-O (Example 3)
12345
In this case we would again continue from the O at position 5, but add to the new counter (of consecutive O's or empty slots) the number of consecutive empty slots that preceded O, here 1, so that we wouldn't miss for example this possible winning position:
X-X-O---X (Example 4)
In this way, in the worst case, one would have to go through all positions 4 times (4 directions, and of course diagonals whose length is less than k can be skipped), giving running time O(mn).
The best way I could think of was doing these two described checks, A and B, in one pass. If the checking algorithm gets through all positions in all directions without reporting "no tie", it reports a tie.
Knowing that you can check a win just by checking in the vicinity of the last piece that was added with running time O(k), I was wondering if there were quicker ways to do an early check for a tie. Doesn't have to be asymptotically quicker. I'm currently keeping the pieces in a two-dimensional array. Is there maybe a data structure that would allow an efficient check? One approach: what is the highest threshold of moves that one can wait the players to make before running any checks for a tie at all?
There are many related questions at Stack Overflow, for example this, but all discussions I could find either only pointed out the obvious tie condition, where the number of moves made is equal to the size of the board (or they checked if the board is full), or handled only the special case where the board is square: m = n. For example this answer claims to do the check for a tie in constant time, but only works when m = n = k. I'm interested in reporting the tie as early as possible and for general m,n and k. Also if the algorithm works for more than two players, that would be neat.
I would reduce the problem of determining a tie to the easier sub-problem:
Can player X still win?
If the answer is 'no' for all players, it is a tie.
To find out whether Player X can win:
fill all blank spaces with virtual 'X'-pieces
are there k 'X'-pieces in a row anywhere?
if there are not --> Player X cannot win. return false.
if there are, find the row of k stones with the least amount of virtual pieces. Count the number of virtual pieces in it.
count the number of moves player X has left, alternating with all other players, until the board is completely full.
if the number of moves is less than the amount of virtual pieces required to win, player X cannot win. return false.
otherwise, player X can still win. return true.
(This algorithm will report a possible win for player X even in cases where the only winning moves for X would have another player win first, but that is ok, since that would not be a tie either)
If, as you said, you can check a win just by checking in the vicinity of the last piece that was added with running time O(k), then I think you can run the above algorithm in O(k * Number_of_empty_spots): Add all virtual X-Piece, note any winning combinations in the vicinity of the added pieces.
The number of empty slots can be large, but as long as there is at least one empty row of size k and player X has still k moves left until the board is filled, you can be sure that player X can still win, so you do not need to run the full check.
This should work with any number of players.
Actually the constant time solution you referenced only works when k = m = n as well. If k is smaller then I don't see any way to adapt the solution to get constant time, basically because there are multiple locations on each row/column/diagonal where a winning consecutive k 0's or 1's may occur.
However, maintaining auxiliary information for each row/column/diagonal can give a speed up. For each row/column/diagonal, you can store the start and end locations for consecutive occurrences of 1's and blanks as possible winning positions for player 1, and similarly store start and end locations of consecutive occurrences of 0's and blanks as possible winning positions for player 0. Note that for a given row/column/diagonal, intervals for player 0 and 1 may overlap if they contain blanks. For each row/column/diagonal, store the intervals for player 1 in sorted order in a self-balancing binary tree (Note you can do this because the intervals are disjoint). Similarly store the intervals for player 0 sorted in a tree. When a player makes a move, find the row/column/diagonals that contain the move location and update the intervals containing the move in the appropriate row column and diagonal trees for the player that did not make the move. For the player that did not make a move, this will split an interval (if it exists) into smaller intervals that you can replace the old interval with and then rebalance the tree. If an interval ever gets to length less than k you can delete it. If a tree ever becomes empty then it is impossible for that player to win in that row/column/diagonal. You can maintain a counter of how many rows/columns/diagonals are impossible to win for each player, and if the counter ever reaches the total number of rows/columns/diagonals for both players then you know you have a tie. The total running time for this is O(log(n/k) + log(m/k)) to check for a tie per move, with O(mn/k) extra space.
You can similarly maintain trees that store consecutive intervals of 1's (without spaces) and update the trees in O(log n + log m) time when a move is made, basically searching for the positions before and after the move in your tree and updating the interval(s) found and merging two intervals if two intervals (before and after) are found. Then you report a win if an interval is ever created/updated and obtains length greater than or equal to k. Similarly for player 0. Total time to check for a win is O(log n + log m) which may be better than O(k) depending on how large k is. Extra space is O(mn).
Let's look at one row (or column or diagonal, it doesn't matter) and count the number of winning lines of length k ("k-line") it's possible to make, at each place in the row, for player X. This solution will keep track of that number over the course of the game, checking fulfillment of the winning condition on each move as well as detecting a tie.
1 2 3... k k k k... 3 2 1
There is one k-line including an X in the leftmost slot, two with the second slot from the left, and so on. If an opposing player, O or otherwise, plays in this row, we can reduce the k-line possibility counts for player X in O(k) time at the time of the move. (The logic for this step should be straightforward after doing an example, needing no other data structure, but any method involving checking each of the k rows of k from will do. Going left to right, only k operations on the counts is needed.) An enemy piece should set the possibility count to -1.
Then, a detectably tied game is one where no cell has a non-zero k-line possibility count for any player. It's easy to check this by keeping track of the index of the first non-zero cell. Maintaining the structure amounts to O(k*players) work on each move. The number of empty slots is less than those filled, for positions that might be tied, so the other answers are good for checking a position in isolation. However, at least for reasonably small numbers of players, this problem is intimately linked with checking the winning condition in the first place, which at minimum you must do, O(k), on every move. Depending on your game engine there may be a better structure that is rich enough to find good moves as well as detect ties. But the possibility counting structure has the nice property that you can check for a win whilst updating it.
If space isn't an issue, I had this idea:
For each player maintain a structure sized (2mn + (1 - k)(m + n) + 2(m - k + 1)(n - k + 1) + 2(sum 1 to (m - k))) where each value represents if one of another player's moves are in one distinct k-sized interval. For example for a 8-8-4 game, one element in the structure could represent row 1, cell 0 to 3; another row 1, cell 1 to 4; etc.
In addition, one variable per player will represent how many elements in their structure are still unset. Only one move is required to set an element, showing that that k-interval can no longer be used to win.
An update of between O(k) and O(4k) time per player seems needed per move. A tie is detected when the number of players exceeds the number of different elements unset.
Using bitsets, the number of bytes needed for each player's structure would be the structure size divided by 8. Notice that when k=m=n, the structure size is 4*k and update time O(4). Less than half a megabyte per player would be needed for a 1000,1000,5 game.
Below is a JavaScript example.
var m = 1000, n = 1000, k = 5, numberOfPlayers = 2
, numberOfHorizontalKIs = m * Math.max(n - k + 1,0)
, numberOfverticalKIs = n * Math.max(m - k + 1,0)
, horizontalVerticalKIArraySize = Math.ceil((numberOfHorizontalKIs + numberOfverticalKIs)/31)
, horizontalAndVerticalKIs = Array(horizontalVerticalKIArraySize)
, numberOfUnsetKIs = horizontalAndVerticalKIs
, upToM = Math.max(0,m - k) // southwest diagonals up to position m
, upToMSum = upToM * (upToM + 1) / 2
, numberOfSouthwestKIs = 2 * upToMSum //sum is multiplied by 2 to account for bottom-right-corner diagonals
+ Math.max(0,n - m + 1) * (m - k + 1)
, diagonalKIArraySize = Math.ceil(2 * numberOfSouthwestKIs/31)
, diagonalKIs = Array(diagonalKIArraySize)
, numberOfUnsetKIs = 2 * numberOfSouthwestKIs + numberOfHorizontalKIs + numberOfverticalKIs
function checkTie(move){
var row = move[0], column = move[1]
//horizontal and vertical
for (var rotate=0; rotate<2; rotate++){
var offset = Math.max(k - n + column, 0)
column -= offset
var index = rotate * numberOfHorizontalKIs + (n - k + 1) * row + column
, count = 0
while (column >= 0 && count < k - offset){
var KIArrayIndex = Math.floor(index / 31)
, bitToSet = 1 << index % 31
if (!(horizontalAndVerticalKIs[KIArrayIndex] & bitToSet)){
horizontalAndVerticalKIs[KIArrayIndex] |= bitToSet
numberOfUnsetKIs--
}
index--
column--
count++
}
//rotate board to log vertical KIs
var mTmp = m
m = n
n = mTmp
row = move[1]
column = move[0]
count = 0
}
//rotate board back
mTmp = m
m = n
n = mTmp
// diagonals
for (var rotate=0; rotate<2; rotate++){
var diagonalTopColumn = column + row
if (diagonalTopColumn < k - 1 || diagonalTopColumn >= n + m - k){
continue
} else {
var offset = Math.max(k - m + row, 0)
row -= offset
column += offset
var dBeforeM = Math.min (diagonalTopColumn - k + 1,m - k)
, dAfterM = n + m - k - diagonalTopColumn
, index = dBeforeM * (dBeforeM + 1) / 2
+ (m - k + 1) * Math.max (Math.min(diagonalTopColumn,n) - m + 1,0)
+ (diagonalTopColumn < n ? 0 : upToMSum - dAfterM * (dAfterM + 1) / 2)
+ (diagonalTopColumn < n ? row : n - 1 - column)
+ rotate * numberOfSouthwestKIs
, count = 0
while (row >= 0 && column < n && count < k - offset){
var KIArrayIndex = Math.floor(index / 31)
, bitToSet = 1 << index % 31
if (!(diagonalKIs[KIArrayIndex] & bitToSet)){
diagonalKIs[KIArrayIndex] |= bitToSet
numberOfUnsetKIs--
}
index--
row--
column++
count++
}
}
//mirror board
column = n - 1 - column
}
if (numberOfUnsetKIs < 1){
return "This player cannot win."
} else {
return "No tie."
}
}

Fast algorithm to optimize a sequence of arithmetic expression

EDIT: clarified description of problem
Is there a fast algorithm solving following problem?
And, is also for extendend version of this problem
that is replaced natural numbers to Z/(2^n Z)?(This problem was too complex to add more quesion in one place, IMO.)
Problem:
For a given set of natural numbers like {7, 20, 17, 100}, required algorithm
returns the shortest sequence of additions, mutliplications and powers compute
all of given numbers.
Each item of sequence are (correct) equation that matches following pattern:
<number> = <number> <op> <number>
where <number> is a natual number, <op> is one of {+, *, ^}.
In the sequence, each operand of <op> should be one of
1
numbers which are already appeared in the left-hand-side of equal.
Example:
Input: {7, 20, 17, 100}
Output:
2 = 1 + 1
3 = 1 + 2
6 = 2 * 3
7 = 1 + 6
10 = 3 + 7
17 = 7 + 10
20 = 2 * 10
100 = 10 ^ 2
I wrote backtracking algorithm in Haskell.
it works for small input like above, but my real query is
randomly distributed ~30 numbers in [0,255].
for real query, following code takes 2~10 minutes in my PC.
(Actual code,
very simple test)
My current (Pseudo)code:
-- generate set of sets required to compute n.
-- operater (+) on set is set union.
requiredNumbers 0 = { {} }
requiredNumbers 1 = { {} }
requiredNumbers n =
{ {j, k} | j^k == n, j >= 2, k >= 2 }
+ { {j, k} | j*k == n, j >= 2, k >= 2 }
+ { {j, k} | j+k == n, j >= 1, k >= 1 }
-- remember the smallest set of "computed" number
bestSet := {i | 1 <= i <= largeNumber}
-- backtracking algorithm
-- from: input
-- to: accumulator of "already computed" number
closure from to =
if (from is empty)
if (|bestSet| > |to|)
bestSet := to
return
else if (|from| + |to| >= |bestSet|)
-- cut branch
return
else
m := min(from)
from' := deleteMin(from)
foreach (req in (requiredNumbers m))
closure (from' + (req - to)) (to + {m})
-- recoverEquation is a function converts set of number to set of equation.
-- it can be done easily.
output = recoverEquation (closure input {})
Additional Note:
Answers like
There isn't a fast algorithm, because...
There is a heuristic algorithm, it is...
are also welcomed. Now I'm feeling that there is no fast and exact algorithm...
Answer #1 can be used as a heuristic, I think.
What if you worked backwards from the highest number in a sorted input, checking if/how to utilize the smaller numbers (and numbers that are being introduced) in its construction?
For example, although this may not guarantee the shortest sequence...
input: {7, 20, 17, 100}
(100) = (20) * 5 =>
(7) = 5 + 2 =>
(17) = 10 + (7) =>
(20) = 10 * 2 =>
10 = 5 * 2 =>
5 = 3 + 2 =>
3 = 2 + 1 =>
2 = 1 + 1
What I recommend is to transform it into some kind of graph shortest path algorithm.
For each number, you compute (and store) the shortest path of operations. Technically one step is enough: For each number you can store the operation and the two operands (left and right, because power operation is not commutative), and also the weight ("nodes")
Initially you register 1 with the weight of zero
Every time you register a new number, you have to generate all calculations with that number (all additions, multiplications, powers) with all already-registered numbers. ("edges")
Filter for the calculations: it the result of the calculation is already registered, you shouldn't store that, because there is an easier way to get to that number
Store only 1 operation for the commutative ones (1+2=2+1)
Prefilter the power operation because that may even cause overflow
You have to order this list to the shortest sum path (weight of the edge). Weight = (weight of operand1) + (weight of operand2) + (1, which is the weight of the operation)
You can exclude all resulting numbers which are greater than the maximum number that we have to find (e.g. if we found 100 already, anything greater that 20 can be excluded) - this can be refined so that you can check the members of the operations also.
If you hit one of your target numbers, then you found the shortest way of calculating one of your target numbers, you have to restart the generations:
Recalculate the maximum of the target numbers
Go back on the paths of the currently found number, set their weight to 0 (they will be given from now on, because their cost is already paid)
Recalculate the weight for the operations in the generation list, because the source operand weight may have been changed (this results reordering at the end) - here you can exclude those where either operand is greater than the new maximum
If all the numbers are hit, then the search is over
You can build your expression using the "backlinks" (operation, left and right operands) for each of your target numbers.
The main point is that we always keep our eye on the target function, which is that the total number of operation must be the minimum possible. In order to get this, we always calculate the shortest path to a certain number, then considering that number (and all the other numbers on the way) as given numbers, then extending our search to the remaining targets.
Theoretically, this algorithm processes (registers) each numbers only once. Applying the proper filters cuts the unnecessary branches, so nothing is calculated twice (except the weights of the in-queue elements)

algorithm to find a number in which product of number of 4 & 7 is maximum in given range

I am stuck in a question in which lower bound L and Upper bound U is given.
Now suppose in the decimal representation of integer X digit 4 appears A times and digit 7 appears B times.
Problem is to find X which has maximum value of A*B for L<=X<=U.
Is there any efficient algorithm to solve it?
If I understood the problem correctly, the following should work:
Assume all numbers have the same number of digits (if e.g. L has less digits than U, we can just fill in the beginning with 0 s).
Let Z = U - L.
Now we go from the first (/highest/leftmost) digit to the last one. If we are looking at the i th digit, let L(i), U(i), Z(i) and X(i) be the corresponding digit.
for all leading Z(i) which are 0, we set X(i) = L(i) (we don't have a choice).
For the first not 0 Z(i) check: is there a 4 or a 7 in the interval [L(i), U(i)-1]? If yes let X(i) be that 4 or 7 otherwise let X(i) = U(i)-1.
Now fill up the rest of X with 4s and 7s such that you choose a 4 if you have assigned more 7s so far and vice versa.
Maybe an example can help in understanding this:
Given U = 5000 and L = 4900.
Now Z = 0100.
From the algorithm we set
X(1) = L(1) = 4 (we have no choice)
X(2) = U(2)-1 = 9 (the first non 0 digit in Z)
X(3) = 7 (we already had a 4)
X(4) = 4 (can be chosen arbitrarily)
Leading to X = 4974 with an objective of 2*1=2
It seems you have the algorithm thought out already.
Just break it down piece by piece and solve each part. I usually write something like you did there with comments and then break those down until they are at a reasonable bite size to write code for.
When you have it working, if needed, you can optimize it.

How to implement Random(a,b) with only Random(0,1)? [duplicate]

This question already has answers here:
Closed 11 years ago.
Possible Duplicate:
how to get uniformed random between a, b by a known uniformed random function RANDOM(0,1)
In the book of Introduction to algorithms, there is an excise:
Describe an implementation of the procedure Random(a, b) that only makes calls to Random(0,1). What is the expected running time of your procedure, as a function of a and b? The probability of the result of Random(a,b) should be pure uniformly distributed, as Random(0,1)
For the Random function, the results are integers between a and b, inclusively. For e.g., Random(0,1) generates either 0 or 1; Random(a, b) generates a, a+1, a+2, ..., b
My solution is like this:
for i = 1 to b-a
r = a + Random(0,1)
return r
the running time is T=b-a
Is this correct? Are the results of my solutions uniformly distributed?
Thanks
What if my new solution is like this:
r = a
for i = 1 to b - a //including b-a
r += Random(0,1)
return r
If it is not correct, why r += Random(0,1) makes r not uniformly distributed?
Others have explained why your solution doesn't work. Here's the correct solution:
1) Find the smallest number, p, such that 2^p > b-a.
2) Perform the following algorithm:
r=0
for i = 1 to p
r = 2*r + Random(0,1)
3) If r is greater than b-a, go to step 2.
4) Your result is r+a
So let's try Random(1,3).
So b-a is 2.
2^1 = 2, so p will have to be 2 so that 2^p is greater than 2.
So we'll loop two times. Let's try all possible outputs:
00 -> r=0, 0 is not > 2, so we output 0+1 or 1.
01 -> r=1, 1 is not > 2, so we output 1+1 or 2.
10 -> r=2, 2 is not > 2, so we output 2+1 or 3.
11 -> r=3, 3 is > 2, so we repeat.
So 1/4 of the time, we output 1. 1/4 of the time we output 2. 1/4 of the time we output 3. And 1/4 of the time we have to repeat the algorithm a second time. Looks good.
Note that if you have to do this a lot, two optimizations are handy:
1) If you use the same range a lot, have a class that computes p once so you don't have to compute it each time.
2) Many CPUs have fast ways to perform step 1 that aren't exposed in high-level languages. For example, x86 CPUs have the BSR instruction.
No, it's not correct, that method will concentrate around (a+b)/2. It's a binomial distribution.
Are you sure that Random(0,1) produces integers? it would make more sense if it produced floating point values between 0 and 1. Then the solution would be an affine transformation, running time independent of a and b.
An idea I just had, in case it's about integer values: use bisection. At each step, you have a range low-high. If Random(0,1) returns 0, the next range is low-(low+high)/2, else (low+high)/2-high.
Details and complexity left to you, since it's homework.
That should create (approximately) a uniform distribution.
Edit: approximately is the important word there. Uniform if b-a+1 is a power of 2, not too far off if it's close, but not good enough generally. Ah, well it was a spontaneous idea, can't get them all right.
No, your solution isn't correct. This sum'll have binomial distribution.
However, you can generate a pure random sequence of 0, 1 and treat it as a binary number.
repeat
result = a
steps = ceiling(log(b - a))
for i = 0 to steps
result += (2 ^ i) * Random(0, 1)
until result <= b
KennyTM: my bad.
I read the other answers. For fun, here is another way to find the random number:
Allocate an array with b-a elements.
Set all the values to 1.
Iterate through the array. For each nonzero element, flip the coin, as it were. If it is came up 0, set the element to 0.
Whenever, after a complete iteration, you only have 1 element remaining, you have your random number: a+i where i is the index of the nonzero element (assuming we start indexing on 0). All numbers are then equally likely. (You would have to deal with the case where it's a tie, but I leave that as an exercise for you.)
This would have O(infinity) ... :)
On average, though, half the numbers would be eliminated, so it would have an average case running time of log_2 (b-a).
First of all I assume you are actually accumulating the result, not adding 0 or 1 to a on each step.
Using some probabilites you can prove that your solution is not uniformly distibuted. The chance that the resulting value r is (a+b)/2 is greatest. For instance if a is 0 and b is 7, the chance that you get a value 4 is (combination 4 of 7) divided by 2 raised to the power 7. The reason for that is that no matter which 4 out of the 7 values are 1 the result will still be 4.
The running time you estimate is correct.
Your solution's pseudocode should look like:
r=a
for i = 0 to b-a
r+=Random(0,1)
return r
As for uniform distribution, assuming that the random implementation this random number generator is based on is perfectly uniform the odds of getting 0 or 1 are 50%. Therefore getting the number you want is the result of that choice made over and over again.
So for a=1, b=5, there are 5 choices made.
The odds of getting 1 involves 5 decisions, all 0, the odds of that are 0.5^5 = 3.125%
The odds of getting 5 involves 5 decisions, all 1, the odds of that are 0.5^5 = 3.125%
As you can see from this, the distribution is not uniform -- the odds of any number should be 20%.
In the algorithm you created, it is really not equally distributed.
The result "r" will always be either "a" or "a+1". It will never go beyond that.
It should look something like this:
r=0;
for i=0 to b-a
r = a + r + Random(0,1)
return r;
By including "r" into your computation, you are including the "randomness" of all the previous "for" loop runs.

Resources