Automatically check for column width beyond 72 - syntax

So I kind of inherited this (not really legacy) project written in Fortran. In order to make it thread-safe, I had to pass a void* pointer (called user_data, you might know the pattern) to all fortran routines so they could pass it back to the callbacks (hence global state was properly heap allocated now).
To my sincere surprise, this lead to a complete breakdown and segfaults in the weirdest places. After all, I had only added one unchanged argument to all functions?
To my sheer horror (I am not a Fortran programmer, just an average hacker with a knack for problem solving), I learned that a Fortran compiler simply ignores everything beyond column 72, probably because columns are expensive or something, without even giving a warning (well except for some cases where a "type error" (haha type-discipline in Fortran, what a joke) was reported).
Up until today I keep finding places in the code that suffer from the unintended consequences of this indention.
Is there any tool out there that can check a Fortran codebase reliably for this kind of mistake?
And, as a bonus question dedicated to John Oliver: Why is a 72 column limit still a thing?

Is there any tool out there that can check a Fortran codebase reliably for this kind of mistake?
Yes, your compiler. With gfortran, this would be -Wline-truncation (included in -Wall, something that you always should have on). With ifort, this would be -warn truncated_source. I would bet that (almost) any other compiler has options for this as well.
The column limit of 72 is grown historically from punch cards and kept for backwards compatibility. With most compilers you can change or even disable this limit. With gfortran this would be -ffixed-line-length-<n> with an integer <n> and -ffixed-line-length-0 to disable it.

Related

Do compilers take the "status quo" when optimizations produced worse results?

To my knowledge, when using optimizations there is a risk to face the "maybe will be worse" case (i.e. the performance will be degraded, or the code size will be higher, or both). However do compilers able to detect such cases and return to the "status quo" (i.e. fall back to the original non-optimized code) when optimizations produced worse results? Can someone give (if possible) a particular examples of what compilers (for example, gcc, Clang (LLVM), etc.) do in this case?
In JIT compilers there is a thing called Deoptimization. Normally the compiler will optimize heavily assuming something, but during execution some of the assumption may fail. For example the compiler will assume the inmput of a function is always an integer and produce a highly efficient code for integer manipulation, but if, and such things happen in dynamic languages, the input is suddenly and array or a string, the code should revert. See v8 turbofan speculative optimizator for example.
For non JIT there is no way to deoptimize during runtime, but the compiler may create multiple execution paths. Your question is not fully logical because how would compiler know if it created unoptimal code? It can only use the same algorithm it used to do the optimization itself. That's probably why you are downwoted.

Why do some compilers like gcc, require you to activate optimizations? Why not run them by default?

Title basically, why not run all possible optimizations by default?
Enabling optimizations is less convenient when you're in a write-compile-test cycle: it makes compilation take longer, and it makes the resulting code work less well with a debugger (because the generated code may be structured very differently from what you wrote). So when trying to rapidly implement and test changes, many people prefer to have optimizations off, and then to turn then back on for final testing and for the build that will be shipped.
(There are downsides to this, of course. There are some warnings that the compiler can only issue when optimizing, such as uninitialized variables. And there are many cases where buggy code only actually misbehaves when optimizations are on. So there is some benefit to using optimizations more often. Still, if you're trying to track down a bug that is reproducible with optimizations off, it is definitely easier to debug it that way.)
This means that if you were to count up the total number of times that the compiler is run, the vast majority will be runs where the user prefers not to optimize. Therefore it makes a certain amount of sense for "no optimization" to be the default.
Of course, now people are used to this behavior, and so even if it were better to have the opposite default, changing it would cause confusion.

How to know what code has been optimized out?

Is there a way to get information during or after compilation about what parts of the code have been optimized out, but without looking at the assembly or executing the code.
It'd be nice to know immediately if a big code chunk gets optimized away.
Sorry, but your expectations do not match what compilers actually do. Whether you're trying to find dead code or to find bugs that cause code that should run to be skipped, it is not information that a compiler can provide in an easy-to-read form.
With a compiler that translates each line of source code into a sequence of machine instructions, the compiler could easily tell you that it didn't include anything corresponding to a particular line. Of course it couldn't tell you if a line was translated to machine instructions but those machine instructions in fact won't ever be executed — code reachability is undecidable — but I don't think that's what you're after anyway.
The problem is that modern optimizing compilers are a lot more complex than that. A piece of code is often copied around and compiled multiple times under different assumptions (specialization, partial evaluation, loop unrolling, …). Or, conversely, pieces of code can be merged together (function inlining, …). There isn't a simple correspondence between source code and machine code. (That's why debuggers sometimes have trouble reporting the exact source code location of a binary instruction.)
If a big chunk of code gets optimized away, that may simply because it's one of many specialized copies and that particular specialization never happens (e.g. there's separate code for x==0 and x!=0, and separate code for y==0 and y!=0, and x and y are never 0 together so the x==0 && y==0 branch is eventually dropped). It may be something generated by a compile-time conditional instruction, such as a C macro that the compiler optimizes; this happens so often in C code that if compilers reported all such instances, that would create a lot of false positives.
Getting useful reports of potentially unused code or suspicious-looking program code that could indicate a bug requires a rather different kind of static analysis than what compilers do. There are tools that can do that, but they're typically not the same tools that convert source code to optimized machine code. Making static analysis tools that both detect potential problems often enough to be useful and don't produce so many false positives that they're practically unusable is not easy.
gcc -S
will output the assembly code that would have been passed to the assembler (and eventually been linked into the executable). If you squint the right way (and are patient), you can work backwards from that to confirm whether a given bit of code has actually been included in the executable, or was optimized away.
Obviously not something you'd do unless you have a suspicion that something was going on, given the time and effort required...

AVR's Program memory

I ve written a code in C for ATmega128 and
I d like to know how the changes that I do in the code influence the Program Memory.
To be more specific, let's consider that the code is similar to that one:
d=fun1(a,b);
c=fun2(c,d);
the change that I do in the code is that I call the same functions more times e.g.:
d=fun1(a,b);
c=fun2(c,d);
h=fun1(k,l);
n=fun2(p,m);
etc...
I build the solution at the AtmelStudio 6.1 and I see the changes in the Program Memory.
Is there anyway to foresee, without builiding the solution, how the chages in the code will affect the program memory?
Thanks!!
Generally speaking this is next to impossible using C/C++ (that means the effort does not pay off).
In your simple case (the number of calls increase), you can determine the number of instructions for each call, and multiply by the number. This will only be correct, if the compiler does not inline in all cases, and does not apply optimzations at a higher level.
These calculations might be wrong, if you upgrade to a newer gcc version.
So normally you only get exact numbers when you compare two builds (same compiler version, same optimisations). avr-size and avr-nm gives you all information, for example to compare functions by size. You can automate this task (by converting the output into .csv files), and use a spreadsheet or diff to look for changes.
This method normally only pays off, if you have to squeeze a program into a smaller device (from 4k flash into 2k for example - you already have 128k flash, that's quite a lot).
This process is frustrating, because if you apply the same design pattern in C with small differences, it can lead to different sizes: So from C/C++, you cannot really predict what's going to happen.

how to minimize a programming language compile time?

I was thinking more about the programming language i am designing. and i was wondering, what are ways i could minimize its compile time?
Your main problem today is I/O. Your CPU is many times faster than main memory and memory is about 1000 times faster than accessing the hard disk.
So unless you do extensive optimizations to the source code, the CPU will spend most of the time waiting for data to be read or written.
Try these rules:
Design your compiler to work in several, independent steps. The goal is to be able to run each step in a different thread so you can utilize multi-core CPUs. It will also help to parallelize the whole compile process (i.e. compile more than one file at the same time)
It will also allow you to load many source files in advance and preprocess them so the actual compile step can work faster.
Try to allow to compile files independently. For example, create a "missing symbol pool" for the project. Missing symbols should not cause compile failures as such. If you find a missing symbol somewhere, remove it from the pool. When all files have been compiled, check that the pool is empty.
Create a cache with important information. For example: File X uses symbols from file Y. This way, you can skip compiling file Z (which doesn't reference anything in Y) when Y changes. If you want to go one step further, put all symbols which are defined anywhere in a pool. If a file changes in such a way that symbols are added/removed, you will know immediately which files are affected (without even opening them).
Compile in the background. Start a compiler process which checks the project directory for changes and compile them as soon as the user saves the file. This way, you will only have to compile a few files each time instead of everything. In the long run, you will compile much more but for the user, turnover times will be much shorter (= time user has to wait until she can run the compiled result after a change).
Use a "Just in time" compiler (i.e. compile a file when it is used, for example in an import statement). Projects are then distributed in source form and compiled when run for the first time. Python does this. To make this perform, you can precompile the library during the installation of your compiler.
Don't use header files. Keep all information in a single place and generate header files from the source if you have to. Maybe keep the header files just in memory and never save them to disk.
what are ways i could minimize its compile time?
No compilation (interpreted language)
Delayed (just in time) compilation
Incremental compilation
Precompiled header files
I've implemented a compiler myself, and ended up having to look at this once people started batch feeding it hundreds of source files. I was quite suprised what I found out.
It turns out that the most important thing you can optimize is not your grammar. It's not your lexical analyzer or your parser either. Instead, the most important thing in terms of speed is the code that reads in your source files from disk. I/O's to disk are slow. Really slow. You can pretty much measure your compiler's speed by the number of disk I/Os it performs.
So it turns out that the absolute best thing you can do to speed up a compiler is to read the entire file into memory in one big I/O, do all your lexing, parsing, etc. from RAM, and then write out the result to disk in one big I/O.
I talked with one of the head guys maintaining Gnat (GCC's Ada compiler) about this, and he told me that he actually used to put everything he could onto RAM disks so that even his file I/O was really just RAM reads and writes.
In most languages (pretty well everything other than C++), compiling individual compilation units is quite fast.
Binding/linking is often what's slow - the linker has to reference the whole program rather than just a single unit.
C++ suffers as - unless you use the pImpl idiom - it requires the implementation details of every object and all inline functions to compile client code.
Java (source to bytecode) suffers because the grammar doesn't differentiate objects and classes - you have to load the Foo class to see if Foo.Bar.Baz is the Baz field of object referenced by the Bar static field of the Foo class, or a static field of the Foo.Bar class. You can make the change in the source of the Foo class between the two, and not change the source of the client code, but still have to recompile the client code, as the bytecode differentiates between the two forms even though the syntax doesn't. AFAIK Python bytecode doesn't differentiate between the two - modules are true members of their parents.
C++ and C suffer if you include more headers than are required, as the preprocessor has to process each header many times, and the compiler compile them. Minimizing header size and complexity helps, suggesting better modularity would improve compilation time. It's not always possible to cache header compilation, as what definitions are present when the header is preprocessed can alter its semantics, and even syntax.
C suffers if you use the preprocessor a lot, but the actual compilation is fast; much of C code uses typedef struct _X* X_ptr to hide implementation better than C++ does - a C header can easily consist of typedefs and function declarations, giving better encapsulation.
So I'd suggest making your language hide implementation details from client code, and if you are an OO language with both instance members and namespaces, make the syntax for accessing the two unambiguous. Allow true modules, so client code only has to be aware of the interface rather than implementation details. Don't allow preprocessor macros or other variation mechanism to alter the semantics of referenced modules.
Here are some performance tricks that we've learned by measuring compilation speed and what affects it:
Write a two-pass compiler: characters to IR, IR to code. (It's easier to write a three-pass compiler that goes characters -> AST -> IR -> code, but it's not as fast.)
As a corollary, don't have an optimizer; it's hard to write a fast optimizer.
Consider generating bytecode instead of native machine code. The virtual machine for Lua is a good model.
Try a linear-scan register allocator or the simple register allocator that Fraser and Hanson used in lcc.
In a simple compiler, lexical analysis is often the greatest performance bottleneck. If you are writing C or C++ code, use re2c. If you're using another language (which you will find much more pleasant), read the paper aboug re2c and apply the lessons learned.
Generate code using maximal munch, or possibly iburg.
Surprisingly, the GNU assembler is a bottleneck in many compilers. If you can generate binary directly, do so. Or check out the New Jersey Machine-Code Toolkit.
As noted above, design your language to avoid anything like #include. Either use no interface files or precompile your interface files. This tactic dramatically reduces the burdern on the lexer, which as I said is often the biggest bottleneck.
Here's a shot..
Use incremental compilation if your toolchain supports it.
(make, visual studio, etc).
For example, in GCC/make, if you have many files to compile, but only make changes in one file, then only that one file is compiled.
Eiffel had an idea of different states of frozen, and recompiling didn't necessarily mean that the whole class was recompiled.
How much can you break up the compliable modules, and how much do you care to keep track of them?
Make the grammar simple and unambiguous, and therefore quick and easy to parse.
Place strong restrictions on file inclusion.
Allow compilation without full information whenever possible (eg. predeclaration in C and C++).
One-pass compilation, if possible.
One thing surprisingly missing in answers so far: make you you're doing a context free grammar, etc. Have a good hard look at languages designed by Wirth such as Pascal & Modula-2. You don't have to reimplement Pascal, but the grammar design is custom made for fast compiling. Then see if you can find any old articles about the tricks Anders pulled implementing Turbo Pascal. Hint: table driven.
it depends on what language/platform you're programming for. for .NET development, minimise the number of projects that you have in your solution.
In the old days you could get dramatic speedups by setting up a RAM drive and compiling there. Don't know if this still holds true, though.
In C++ you could use distributed compilation with tools like Incredibuild
A simple one: make sure the compiler can natively take advantage of multi-core CPUs.
Make sure that everything can be compiled the fist time you try to compile it. E.g. ban forward references.
Use a context free grammar so that you can find the correct parse tree without a symbol table.
Make sure that the semantics can be deduced from the syntax so you can construct the correct AST directly rather than by mucking with a parse tree and symbol table.
How serious a compiler is this?
Unless the syntax is pretty convoluted, the parser should be able to run no more than 10-100 times slower than just indexing through the input file characters.
Similarly, code generation should be limited by output formatting.
You shouldn't be hitting any performance issues unless you're doing a big, serious compiler, capable of handling mega-line apps with lots of header files.
Then you need to worry about precompiled headers, optimization passes, and linking.
I haven't seen much work done for minimizing the compile time. But some ideas do come to mind:
Keep the grammar simple. Convoluted grammar will increase your compile time.
Try making use of parallelism, either using multicore GPU or CPU.
Benchmark a modern compiler and see what are the bottlenecks and what you can do in you compiler/language to avoid them.
Unless you are writing a highly specialized language, compile time is not really an issue..
Make a build system that doesn't suck!
There's a huge amount of programs out there with maybe 3 source files that take under a second to compile, but before you get that far you'd have to sit through an automake script that takes about 2 minutes checking things like the size of an int. And if you go to compile something else a minute later, it makes you sit through almost exactly the same set of tests.
So unless your compiler is doing awful things to the user like changing the size of its ints or changing basic function implementations between runs, just dump that info out to a file and let them get it in a second instead of 2 minutes.

Resources