Matlab or ImageJ or Fiji image stitching - image

Looking for help in solving this problem. I understand how stitching works on Matlab and Fiji but what I have is a very particular case. I want to stich an series of images together. So the easiest way to describe it is lets say I am walking down a long street with a repeating pattern of buildings on both sides. So I snap a picture facing down the street which makes the buildings kind of in the Peripheral view. So I move a set number of steps and take another picture and so on and so forth. How would I stich these photos together using Fiji or Matlab.

Related

How to preprocess aerial image for coastline detection

I am working on a program that gets exact pixel values of the shoreline in a given image. What is the best way to preprocess these types of images in order to make my life easier?
A sample image:
I suppose that you want to be able to segment the land from the water this way defining a path for the shoreline.
For this task I recommend you using an edge detection algorithm. A simple vertical Sobel filter should be enough given the image that you have provided. More details about its insides and API call here.
Do you have images with different meteorological conditions? Your algorithm should be robust when it comes to different lighting scenarios: night, rain etc (if that is the case).
A thresholding with respect to the tones that you have in your image might also help, details here.
For a proper binarized image the following contour finding methods proposed by OpenCV should do the job for you.

Latent space image interpolation

Can someone tell me how (or the name of it, so that I could look it up) I can implement this interpolation effect? https://www.youtube.com/watch?v=36lE9tV9vm0&t=3010s&frags=pl%2Cwn
I tried to use r = r+dr, g = g+dr and b = b+db for the RGB values in each iteration, but it looks way too simple compared to the effect from the video.
"Can someone tell me how I can implement this interpolation effect?
(or the name of it, so that I could look it up)..."
It's not actually a named interpolation effect. It appears to interpolate but really it's just realtime updated variations of some fictional facial "features" (the hair, eyes, nose, etc are synthesized pixels taking hints from a library/database of possible matching feature types).
For this technique they used Neural Networks to do a process similar to DFT Image Reconstruction. You'll be modifying the image data in Frequency domain (with u,v), not Time domain (using x,y).
You can read about it at this PDF: https://research.nvidia.com/sites/default/files/pubs/2017-10_Progressive-Growing-of/karras2018iclr-paper.pdf
The (Python) source code:
https://github.com/tkarras/progressive_growing_of_gans
For ideas, on Youtube you can look up:
DFT image reconstruction (there's a good example with b/w Nicholas Cage photo reconstructed in stages. Loud music warning).
Image Synthesis with neural networks (one clip had salternative shoe and hand-bag designs (item photos) being "synthesized" by an N.N. after it analyzed features from other existing catalogue photos as "inspiration".
Image Enhancement Super Resolution using neural networks This method is closest to answering your question. One example has very low-res blurry pixelated image in b/w. Cannot tell if boy or girl. During a test, The network synthesizes various higher quality face images that it thinks is the correct match for the testing input.
After understanding what/how they're achieve it, you could think of shortcuts to get similar effect without needing networks eg: only using regular pixel editing functions.
Found it in another video, it is called "latent space interpolation", it has to be applied on the compressed images. If I have image A and the next image is image B, I have first to encode A and B, use the interpolation on the encoded data and finally decode the resulted image.
As of today, I found out that this kind of interpolation effect can be easily implemented for 3d image data. That is if the image data is available in a normalized and at 3d origin centred way, like for example in a unit sphere around the origin and the data of each faceimage is inside that unit sphere. Having the data of two images stored this way the interpolation can be calculated by taking the differences of rays going through the origin center and through each area of the sphere at some desired resolution.

Plotting data cubes

Is there a way to plot data cubes with any kind of program? In order to plot this (1) image, I had to use TinkerCard, that by the way doesn't allow to put names along the data cube dimensions. Is there any kind of tool that allows do do something similar to (2) or (3)? Thanks in advance
I think this is a not possible.
The cubes which I play with all have atleast 10 dimensions.
The problem is that the short name, olap cube, suggests that some sort of pictorial representation is possible.
I think it is maybe better to remeber them using the fuller name multi-dimensional cubes.
Once past 3 dimensions I don't understand how it will be possible to draw a representative picture.
Saying all the above I have a book co-authored by Mosha Pasumadsky which contains some simple cube pictures similar to your picture. Also I attended a course run by Chris Webb and he used pictures of cubes to help our understanding. The pictures they have used are all very simplified, and of only small spaces within a full cube.

Making 3D representation of an object with a webcam

Is it possible to make a 3D representation of an object by capturing many different angles using a webcam? If it is, how is it possible and how is the image-processing done?
My plan is to make a 3D representation of a person using a webcam, then from the 3D representation, i will be able to tell the person's vital statistics.
As Bart said (but did not post as an actual answer) this is entirely possible.
The research topic you are interested in is often called multi view stereo or something similar.
The basic idea resolves around using point correspondences between two (or more) images and then try to find the best matching camera positions. When the positions are found you can use stereo algorithms to back project the image points into a 3D coordinate system and form a point cloud.
From that point cloud you can then further process it to get the measurements you are looking for.
If you are completely new to the subject you have some fascinating reading to look forward to!
Bart proposed Multiple view geometry by Hartley and Zisserman, which is a very nice book indeed.
As Bart and Kigurai pointed out, this process has been studied under the title of "stereo" or "multi-view stereo" techniques. To be able to get a 3D model from a set of pictures, you need to do the following:
a) You need to know the "internal" parameters of a camera. This includes the focal length of the camera, the principal point of the image and account for radial distortion in the image.
b) You also need to know the position and orientation of each camera with respect to each other or a "world" co-ordinate system. This is called the "pose" of the camera.
There are algorithms to perform (a) and (b) which are described in Hartley and Zisserman's "Multiple View Geometry" book. Alternatively, you can use Noah Snavely's "Bundler" http://phototour.cs.washington.edu/bundler/ software to also do the same thing in a very robust manner.
Once you have the camera parameters, you essentially know how a 3D point (X,Y,Z) in the world maps to an image co-ordinate (u,v) on the photo. You also know how to map an image co-ordinate to the world. You can create a dense point cloud by searching for a match for each pixel on one photo in a photo taken from a different view-point. This requires a two-dimensional search. You can simplify this procedure by making the search 1-dimensional. This is called "rectification". You essentially take two photos and transform then so that their rows correspond to the same line in the world (simplified statement). Now you only have to search along image rows.
An algorithm for this can be also found in Hartley and Zisserman.
Finally, you need to do the matching based on some measure. There is a lot of literature out there on "stereo matching". Another word used is "disparity estimation". This is basically searching for the match of pixel (u,v) on one photo to its match (u, v') on the other photo. Once you have the match, the difference between them can be used to map back to a 3D point.
You can use Yasutaka Furukawa's "CMVS" or "PMVS2" software to do this. Or if you want to experiment by yourself, openCV is a open-source computer vision toolbox to do many of the sub-tasks required for this.
This can be done with two webcams in the same ways your eyes work. It is called stereoscopic vision.
Have a look at this:
http://opencv.willowgarage.com/documentation/camera_calibration_and_3d_reconstruction.html
An affordable alternative to get 3D data would be the Kinect camera system.
Maybe not the answer you are hoping for but Microsoft's Kinect is doing that exact thing, there are some open source drivers out there that allow you to connect it to your windows/linux box.

image feature identification

I am looking for a solution to do the following:
( the focus of my question is step 2. )
a picture of a house including the front yard
extract information from the picture like the dimensions and location of the house, trees, sidewalk, and car. Also, the textures and colors of the house, cars, trees, and sidewalk.
use extracted information to generate a model
How can I extract that information?
You could also consult Tatiana Jaworska research on this. As I understood, this details at least 1 new algorithm to feature extraction (targeted at roofs, doors, ...) by colour (RGB). More intriguing, the last publication also uses parameterized objects to be identified in the house images... that must might be a really good starting point for what you're trying to do.
link to her publications:
http://www.springerlink.com/content/w518j70542780r34/
http://portal.acm.org/citation.cfm?id=1578785
http://www.ibspan.waw.pl/~jaworska/TJ_BOS2010.pdf
Yes. You can extract these information from a picture.
1. You just identify these objects in a picture using some detection algorithms.
2. Measure these objects dimensions and generate a model using extracted information.
well actually your desired goal is not so easy to achieve. First of all you'll need a good way to figure what what is what and what is where on your image. And there simply is no easy "algorithm" for detecting houses/cars/whatsoever on an image. There are ways to segment different objects (like cars) from an image, but those don't work generally. Especially on houses this would be hard since each house looks different and it's hard to find one solid measurement for "this is house and this is not"...
Am I assuming it right that you are trying to simply photograph a house (with front yard) and build a texturized 3D-model out of it? This is not going to work since you need several photos of the house to get positions of walls/corners and everything in 3D space (There are approaches that try a mesh reconstruction with one image only but they lack of depth information and results are fairly poor). So if you would like to create 3D-mdoels you will need several photos of different angles of the house.
There are several different approaches that use this kind of technique to reconstruct real world objects to triangle-meshes.
Basically they work after the principle:
Try to find points in images of different viewpoint which are the same on an object. Considering you are photographing a house this could be salient structures likes corners of windows/doors or corners or edges on the walls/roof/...
Knowing where one and the same point of your house is in several different photos and knowing the position of the camera of both photos you can reconstruct this point in 3D-space.
Doing this for a lot of equal points will "empower" you to reconstruct the shape of your house as a 3D-model by triangulating the points.
Taking parts of the image as textures and mapping them on the generated model would work as well since you know where what is.
You should have a look at these papers:
http://www.graphicon.ru/1999/3D%20Reconstruction/Valiev.pdf
http://people.csail.mit.edu/wojciech/pubs/LabeledRec.pdf
http://people.csail.mit.edu/sparis/publi/2006/oceans/Paris_06_3D_Reconstruction.ppt
The second paper even has an example of doing exactly what you try to achieve, namely reconstruct a textured 3D-model of a house photographed from different angles.
The third link is a powerpoint presentation that shows how the reconstruction works and shows the drawbacks there are.
So you should get familiar with these papers to see what problems you are up to... If you then want to try this on your own have a look at OpenCV. This library provides some methods for feature extraction in images. You then can try to find salient points in each image and try to match them.
Good luck on your project... If you have problems, please keep asking!
I suggest to look at this blog
https://jwork.org/main/node/35
that shows how to identify certain features on images using a convolutional neural network. This particular blog discusses how to identify human faces on images from a large set of random images. You can adjust this example to train neural network using some other images. Note that even in the case of human faces, the identification rate is about 85%, therefore, more complex objects can be even harder to identify

Resources