How to preprocess aerial image for coastline detection - image

I am working on a program that gets exact pixel values of the shoreline in a given image. What is the best way to preprocess these types of images in order to make my life easier?
A sample image:

I suppose that you want to be able to segment the land from the water this way defining a path for the shoreline.
For this task I recommend you using an edge detection algorithm. A simple vertical Sobel filter should be enough given the image that you have provided. More details about its insides and API call here.
Do you have images with different meteorological conditions? Your algorithm should be robust when it comes to different lighting scenarios: night, rain etc (if that is the case).
A thresholding with respect to the tones that you have in your image might also help, details here.
For a proper binarized image the following contour finding methods proposed by OpenCV should do the job for you.

Related

Detecting hexagonal shapes in greyscale or binary image

For my bachelor thesis I need to analyse images taken in the ocean to count and measure the size of water particles.
my problem:
besides the wanted water particles, the images show hexagonal patches all over the image in:
- different sizes
- not regular shape
- different greyscale values
(Example image below!)
It is clear that these patches will falsify my image analysis concerning the size and number of particles.
For this reason this patches need to be detected and deleted somehow.
Since it will be just a little part of the work in my thesis, I don't want to spend much time in it and already tried classic ways like: (imageJ)
playing with the threshold (resulting in also deleting wanted water particles)
analyse image including the hexagonal patches and later sort out the biggest areas (the hexagonal patches have quite the biggest areas, but you will still have a lot of haxagons)
playing with filters: using gaussian filter on a duplicated image and subtract the copy from the original deletes many patches (in reducing the greyscale value) but also deletes little wanted water particles and so again falsifies the result
a more complicated and time consuming solution would be to use a implemented library in for example matlab or opencv to detect points, that describe the shapes.
but so far I could not find any code that fits my task.
Does anyone of you have created such a code I could use for my task or any other idea?
You can see a lot of hexagonal patches in different depths also.
the little spots with an greater pixel value are the wanted particles!
Image processing is quite an involved area so there are no hard and fast rules.
But if it was me I would 'Mask' the image. This involves either defining what you want to keep or remove as a pixel 'Mask'. You then scan the mask over the image recursively and compare the mask to the image portion selected. You then select or remove the section (depending on your method) if it meets your criterion.
One such example of a criteria would be the spatial and grey-scale error weighted against a likelihood function (eg Chi-squared, square mean error etc.) or a Normal distribution that you define the uncertainty..
Some food for thought
Maybe you can try with the Hough transform:
https://en.wikipedia.org/wiki/Hough_transform
Matlab have an built-in function, hough, wich implements this, but only works for lines. Maybe you can start from that and change it to recognize hexagons.

Image analysis - how can I extract image label out of bottle

I am thinking of using OpenCV library for image analysis. Basically I want to automate in my project the extraction of image label from wine bottle.
This is the sample input image:
This is the sample output:
I am thinking what should be my general strategy to extract the image. I am not asking for direct code. Just want to know the general approach to solve the problem.
Thanks!
Sorry for vage answer but in applied computer vision is no such thing like general approach.
some will disagree of course but in reality
all CV applications are custom made for some specific purpose/task
in your case is the idea to find cylindric and probably standing object (bottle)
and then finding of irregular parts in it
I would do it like this:
1.remove noise as much as possible (smooth/sharpen filters)
2.(optionaly) reduce image data (via (i)FT or (i)DCT for example)
3.segmentate objects (usually by homogenity of color or by edge detection or by booth)
4.identify bottle object (by color,shape,or illumination (glass is transparent))
5.identify objects inside bottle (homogenity,not transparent,usually sharp edges,color is not good some labels are black on dark glass)
6.(optional) project label back from cylindric space to flat texture
[notes]
create app with many scrollbars and checkboxes
to be able to change all tresholds and enable disable filters or their order on the run
all parts will take a lot of tweaking of tresholds and weights
you have to do a lot of trial and error runs to find the best filters and their config for your task

Matching a curve pattern to the edges of an image

I have a target image to be searched for a curve along its edges and a template image that contains the curve. What I need to achieve is to find the best match of the curve in the template image within the target image, and based on the score, to find out whether there is a match or not. That also includes rotation and resizing of the curve. The target image can be the output of a Canny Edge detector if that makes things easier.
I am considering to use OpenCV (by using Python or Processing/Java or if those have limited access to the required functions then by using C) to make things practical and efficient, however could not find out if I can use any functions (or a combination of them) in OpenCV that are useable for doing this job. I have been reading through the OpenCV documentation and thought at first that Contours could do this job, however all the examples show closed shapes as opposed to my case where I need to match a open curve to a part of an edge.
So is there a way to do this either by using OpenCV or with any known code or algorithm that you would suggest?
Here are some images to illustrate the problem:
My first thought was Generalized Hough Transform. However I don't know any good implementation for that.
I would try SIFT or SURF first on the canny edge image. It usually is used to find 2d areas, not 1d contours, but if you take the minimum bounding box around your contour and use that as the search pattern, it should work.
OpenCV has an implementation for that:
Features2D + Homography to find a known object
A problem may be getting a good edge image, those black shapes in the back could be distracting.
Also see this Stackoverflow answer:
Image Processing: Algorithm Improvement for 'Coca-Cola Can' Recognition

Detect the vein pattern in leaves?

My aim is to detect the vein pattern in leaves which characterize various species of plants
I have already done the following:
Original image:
After Adaptive thresholding:
However the veins aren't that clear and get distorted , Is there any way i could get a better output
EDIT:
I tried color thresholding my results are still unsatisfactory i get the following image
Please help
The fact that its a JPEG image is going to give the "block" artifacts, which in the example you posted causes most square areas around the veins to have lots of noise, so ideally work on an image that's not been through lossy compression. If that's not possible then try filtering the image to remove some of the noise.
The veins you are wanting to extract have a different colour from the background, leaf and shadow so some sort of colour based threshold might be a good idea. There was a recent S.O. question with some code that might help here.
After that some sort of adaptive normalisation would help increase the contrast before you threshold it.
[edit]
Maybe thresholding isn't an intermediate step that you want to do. I made the following by filtering to remove jpeg artifacts, doing some CMYK channel math (more cyan and black) then applying adaptive equalisation. I'm pretty sure you could then go on to produce (subpixel maybe) edge points using image gradients and non-maxima supression, and maybe use the brightness at each point and the properties of the vein structure (mostly joining at a tangent) to join the points into lines.
In the past I made good experiences with the Edge detecting algorithm difference of Gaussian. Which basically works like this:
You blur the image twice with the gaussian blurr algorithm but with differenct blur radii.
Then you calculate the difference between both images.
Pixel with same color beneath each other will creating a same blured color.
Pixel with different colors beneath each other wil reate a gradient which is depending on the blur radius. For bigger radius the gradient will stretch more far. For smaller ones it wont.
So basically this is bandpass filter. If the selected radii are to small a vain vill create 2 "parallel" lines. But since the veins of leaves are small compared with the extends of the Image you mostly find radii, where a vein results in 1 line.
Here I added th processed picture.
Steps I did on this picture:
desaturate (grayscaled)
difference of Gaussian. Here I blured the first Image with a radius of 10px and the second image with a radius of 2px. The result you can see below.
This is only a quickly created result. I would guess that by optimizing the parametes, you can even get better ones.
This sounds like something I did back in college with neural networks. The neural network stuff is a bit hard so I won't go there. Anyways, patterns are perfect candidates for the 2D Fourier transform! Here is a possible scheme:
You have training data and input data
Your data is represented as a the 2D Fourier transform
If your database is large you should run PCA on the transform results to convert a 2D spectrogram to a 1D spectrogram
Compare the hamming distance by testing the spectrum (after PCA) of 1 image with all of the images in your dataset.
You should expect ~70% recognition with such primitive methods as long as the images are of approximately the same rotation. If the images are not of the same rotation.you may have to use SIFT. To get better recognition you will need more intelligent training sets such as a Hidden Markov Model or a neural net. The truth is to getting good results for this kind of problem may be quite a lot of work.
Check out: https://theiszm.wordpress.com/2010/07/20/7-properties-of-the-2d-fourier-transform/

How can I compensate illumination changes in iris images other than using Retinex theory?

I want to make an effective illumination compensation on iris images and I want this compensation to be based on color i.e. illumination compensation using color rather than texture. I corrected my images for various mechanical errors but I want a simple algorithm to compensate the illumination based on color. Any ideas?
Try subtracting a low-pass copy of the same image?
What you are interested in is white balancing (i.e. achieving color constancy). One of the simplest algorithms is the Gray-World algorithm and I would try that one first because it's very easy to implement (even though it's not very precise).
You also might want to try some Retinex based algorithms. If so, visit this site: http://www.fer.unizg.hr/ipg/resources/color_constancy/
It contains C++ implementations of several Retinex-based color constancy algorithms.

Resources