I'm trying to figure out a way to do a certain "reduction"
I have a varying number of matrices of varying size, e.g
1 2 2 2 5 6...70 70
3 7 8 9 7 7...88 89
1 3 4
2 7 7
3 8 8
9 9 9
.
.
44 49 49 49 49 49 49
50 50 50 50 50 50 50
87 87 88 89 90 91 92
What I need to do (and I hope that I'm explaining this clearly enough) is to combine any possible
combination of columns from these matrices, this means that one column might be
1
3
1
2
3
9
.
.
.
44
50
87
Which would reduce down to
1
2
3
9
.
.
.
44
50
87
The reason why I'm doing this is because I need to find the smallest unique combined column
What am I trying to accomplish
For those interested, I'm trying to find the smallest set of gene knockouts
to disable reactions. Here, every matrix represents a reactions, and the columns represent the indices of
the genes that would disable that reaction.
The method may be as brute force as needed, as these matrices rarely become overwhelmingly large,
and the reaction combinations won't be long either
The problem
I can't (as far as I know) create a for loop with an arbitrary number of iterators, and the number of
matrices (reactions to disable) is arbitrary.
Clarification
If I have matrices A,B,C with columns a1,a2...b1,b2...c1...cn what I need
are the columns [a1 b1 c1], [a1, b1, c2], ..., [a1 b1 cn] ... [an bn cn]
Solution
Courtesy of Michael Ohlrogge below.
Extension of his answer, for completeness
His solution ends with
MyProd = product(Array_of_ColGroups...)
Which gets the job done
And picking up where he left off
collection = collect(MyProd); #MyProd is an iterator
merged_cols = Array[] # the rows of 'collection' are arrays of arrays
for (i,v) in enumerate(collection)
# I apologize for this line
push!(merged_cols, sort!(unique(vcat(v...))))
end
# find all lengths so I can find which is the minimum
lengths = map(x -> length(x), merged_cols);
loc_of_shortest = find(broadcast((x,y) -> length(x) == y, merged_cols,minimum(lengths)))
best_gene_combos = merged_cols[loc_of_shortest]
tl;dr - complete solution:
# example matrices
a = rand(1:50, 8,4); b = rand(1:50, 10,5); c = rand(1:50, 12,4);
Matrices = [a,b,c];
toJagged(x) = [x[:,i] for i in 1:size(x,2)];
JaggedMatrices = [toJagged(x) for x in Matrices];
Combined = [unique(i) for i in JaggedMatrices[1]];
for n in 2:length(JaggedMatrices)
Combined = [unique([i;j]) for i in Combined, j in JaggedMatrices[n]];
end
Lengths = [length(s) for s in Combined];
Minima = findin(Lengths, min(Lengths...));
SubscriptsArray = ind2sub(size(Lengths), Minima);
ComboTuples = [((i[j] for i in SubscriptsArray)...) for j in 1:length(Minima)]
Explanation:
Assume you have matrix a and b
a = rand(1:50, 8,4);
b = rand(1:50, 10,5);
Express them as a jagged array, columns first
A = [a[:,i] for i in 1:size(a,2)];
B = [b[:,i] for i in 1:size(b,2)];
Concatenate rows for all column combinations using a list comprehension; remove duplicates on the spot:
Combined = [unique([i;j]) for i in A, j in B];
You now have all column combinations of a and b, as concatenated rows with duplicates removed. Find the lengths easily:
Lengths = [length(s) for s in Combined];
If you have more than two matrices, perform this process iteratively in a for loop, e.g. by using the Combined matrix in place of a. e.g. if you have a matrix c:
c = rand(1:50, 12,4);
C = [c[:,i] for i in 1:size(c,2)];
Combined = [unique([i;j]) for i in Combined, j in C];
Once you have the Lengths array as a multidimensional array (as many dimensions as input matrices, where the size of each dimension is the number of columns in each matrix), you can find the column combinations that correspond to the lowest value (there may well be more than one combination), via a simple ind2sub operation:
Minima = findin(Lengths, min(Lengths...));
SubscriptsArray = ind2sub(size(Lengths), Minima)
(e.g. for a randomized run with 3 input matrices, I happened to get 4 results with the minimal length of 19. The result of ind2sub was ([4,4,3,4,4],[3,3,4,5,3],[1,3,3,3,4])
You can convert this further to a list of "Column Combination" tuples with a (somewhat ugly) list comprehension:
ComboTuples = [((i[j] for i in SubscriptsArray)...) for j in 1:length(Minima)]
# results in:
# 5-element Array{Tuple{Int64,Int64,Int64},1}:
# (4,3,1)
# (4,3,3)
# (3,4,3)
# (4,5,3)
# (4,3,4)
Ok, let's see if I understand this. You've got n matrices and want all combinations with one column from each of the n matrices? If so, how about the product() (for Cartesian product) from the Iterators package?
using Iterators
n = 3
Array_of_Arrays = [rand(3,3) for idx = 1:n] ## arbitrary representation of your set of arrays.
Array_of_ColGroups = Array(Array, length(Array_of_Arrays))
for (idx, MyArray) in enumerate(Array_of_Arrays)
Array_of_ColGroups[idx] = [MyArray[:,jdx] for jdx in 1:size(MyArray,2)]
end
MyProd = product(Array_of_ColGroups...)
This will create an iterator object which you can then loop over to consider the specific combinations of columns.
Related
I need this for Lagrange polynomials. I'm curious how one would do this without a for loop. The code currently looks like this:
tj = 1:n;
ti = zeros(n,n-1);
for i = 1:n
ti(i,:) = tj([1:i-1, i+1:end]);
end
My tj is not really just a 1:n vector but that's not important. While this for loop gets the job done, I'd rather use some matrix operation. I tried looking for some appropriate matrices to multiply it with, but no luck so far.
Here's a way:
v = [10 20 30 40]; %// example vector
n = numel(v);
M = repmat(v(:), 1, n);
M = M(~eye(n));
M = reshape(M,n-1,n).';
gives
M =
20 30 40
10 30 40
10 20 40
10 20 30
This should generalize to any n
ti = flipud(reshape(repmat(1:n, [n-1 1]), [n n-1]));
Taking a closer look at what's going on. If you look at the resulting matrix closely, you'll see that it's n-1 1's, n-1 2's, etc. from the bottom up.
For the case where n is 3.
ti =
2 3
1 3
1 2
So we can flip this vertically and get
f = flipud(ti);
1 2
1 3
2 3
Really this is [1, 2, 3; 1, 2, 3] reshaped to be 3 x 2 rather than 2 x 3.
In that line of thinking
a = repmat(1:3, [2 1])
1 2 3
1 2 3
b = reshape(a, [3 2]);
1 2
1 3
2 3
c = flipud(b);
2 3
1 3
1 2
We are now back to where you started when we bring it all together and replace 3's with n and 2's with n-1.
Here's another way. First create a matrix where each row is the vector tj but are stacked on top of each other. Next, extract the lower and upper triangular parts of the matrix without the diagonal, then add the results together ensuring that you remove the last column of the lower triangular matrix and the first column of the upper triangular matrix.
n = numel(tj);
V = repmat(tj, n, 1);
L = tril(V,-1);
U = triu(V,1);
ti = L(:,1:end-1) + U(:,2:end);
numel finds the total number of values in tj which we store in n. repmat facilitates the stacking of the vector tj to create a matrix that is n x n large. After, we use tril and triu so that we extract the lower and upper triangular parts of the matrices without the diagonal. In addition, the rest of the matrix is all zero except for the relevant triangular parts. The -1 and 1 flags for tril and triu respectively extract this out successfully while ensuring that the diagonal is all zero. This creates a column of extra zeroes appearing at the last column when calling tril and the first column when calling triu. The last part is to simply add these two matrices together ignoring the last column of the tril result and the first column of the triu result.
Given that tj = [10 20 30 40]; (borrowed from Luis Mendo's example), we get:
ti =
20 30 40
10 30 40
10 20 40
10 20 30
I was giving a test for a company called Code Nation and came across this question which asked me to calculate how many times a number k appears in the submatrix M[n][n]. Now there was a example which said Input like this.
5
1 2 3 2 5
36
M[i][j] is to calculated by a[i]*a[j]
which on calculation turn I could calculate.
1,2,3,2,5
2,4,6,4,10
3,6,9,6,15
2,4,6,4,10
5,10,15,10,25
Now I had to calculate how many times 36 appears in sub matrix of M.
The answer was 5.
I am unable to comprehend how to calculate this submatrix. How to represent it?
I had a naïve approach which resulted in many matrices of which I think none are correct.
One of them is Submatrix[i][j]
1 2 3 2 5
3 9 18 24 39
6 18 36 60 99
15 33 69 129 228
33 66 129 258 486
This was formed by adding all the numbers before it 0,0 to i,j
In this 36 did not appear 5 times so i know this is incorrect. If you can back it up with some pseudo code it will be icing on the cake.
Appreciate the help
[Edit] : Referred Following link 1 link 2
My guess is that you have to compute how many submatrices of M have sum equal to 36.
Here is Matlab code:
a=[1,2,3,2,5];
n=length(a);
M=a'*a;
count = 0;
for a0 = 1:n
for b0 = 1:n
for a1 = a0:n
for b1 = b0:n
A = M(a0:a1,b0:b1);
if (sum(A(:))==36)
count = count + 1;
end
end
end
end
end
count
This prints out 5.
So you are correctly computing M, but then you have to consider every submatrix of M, for example, M is
1,2,3,2,5
2,4,6,4,10
3,6,9,6,15
2,4,6,4,10
5,10,15,10,25
so one possible submatrix is
1,2,3
2,4,6
3,6,9
and if you add up all of these, then the sum is equal to 36.
There is an answer on cstheory which gives an O(n^3) algorithm for this.
I was asked this question in a test and I need help with regards to how I should approach the solution, not the actual answer. The question is
You have been given a 7 digit number(with each digit being distinct and 0-9). The number has this property
product of first 3 digits = product of last 3 digits = product of central 3 digits
Identify the middle digit.
Now, I can do this on paper by brute force(trial and error), the product is 72 and digits being
8,1,9,2,4,3,6
Now how do I approach the problem in a no brute force way?
Let the number is: a b c d e f g
So as per the rule(1):
axbxc = cxdxe = exfxg
more over we have(2):
axb = dxe and
cxd = fxg
This question can be solved with factorization and little bit of hit/trial.
Out of the digits from 1 to 9, 5 and 7 can rejected straight-away since these are prime numbers and would not fit in the above two equations.
The digits 1 to 9 can be factored as:
1 = 1, 2 = 2, 3 = 3, 4 = 2X2, 6 = 2X3, 8 = 2X2X2, 9 = 3X3
After factorization we are now left with total 7 - 2's, 4 - 3's and the number 1.
As for rule 2 we are left with only 4 possibilities, these 4 equations can be computed by factorization logic since we know we have overall 7 2's and 4 3's with us.
1: 1X8(2x2x2) = 2X4(2x2)
2: 1X6(3x2) = 3X2
3: 4(2x2)X3 = 6(3x2)X2
4: 9(3x3)X2 = 6(3x2)X3
Skipping 5 and 7 we are left with 7 digits.
With above equations we have 4 digits with us and are left with remaining 3 digits which can be tested through hit and trial. For example, if we consider the first case we have:
1X8 = 2X4 and are left with 3,6,9.
we have axbxc = cxdxe we can opt c with these 3 options in that case the products would be 24, 48 and 72.
24 cant be correct since for last three digits we are left with are 6,9,4(=216)
48 cant be correct since for last three digits we are left with 3,9,4(=108)
72 could be a valid option since the last three digits in that case would be 3,6,4 (=72)
This question is good to solve with Relational Programming. I think it very clearly lets the programmer see what's going on and how the problem is solved. While it may not be the most efficient way to solve problems, it can still bring desired clarity and handle problems up to a certain size. Consider this small example from Oz:
fun {FindDigits}
D1 = {Digit}
D2 = {Digit}
D3 = {Digit}
D4 = {Digit}
D5 = {Digit}
D6 = {Digit}
D7 = {Digit}
L = [D1 D2 D3] M = [D3 D4 D5] E= [D5 D6 D7] TotL in
TotL = [D1 D2 D3 D4 D5 D6 D7]
{Unique TotL} = true
{ProductList L} = {ProductList M} = {ProductList E}
TotL
end
(Now this would be possible to parameterize furthermore, but non-optimized to illustrate the point).
Here you first pick 7 digits with a function Digit/0. Then you create three lists, L, M and E consisting of the segments, as well as a total list to return (you could also return the concatenation, but I found this better for illustration).
Then comes the point, you specify relations that have to be intact. First, that the TotL is unique (distinct in your tasks wording). Then the next one, that the segment products have to be equal.
What now happens is that a search is conducted for your answers. This is a depth-first search strategy, but could also be breadth-first, and a solver is called to bring out all solutions. The search strategy is found inside the SolveAll/1 function.
{Browse {SolveAll FindDigits}}
Which in turns returns this list of answers:
[[1 8 9 2 4 3 6] [1 8 9 2 4 6 3] [3 6 4 2 9 1 8]
[3 6 4 2 9 8 1] [6 3 4 2 9 1 8] [6 3 4 2 9 8 1]
[8 1 9 2 4 3 6] [8 1 9 2 4 6 3]]
At least this way forward is not using brute force. Essentially you are searching for answers here. There might be heuristics that let you find the correct answer sooner (some mathematical magic, perhaps), or you can use genetic algorithms to search the space or other well-known strategies.
Prime factor of distinct digit (if possible)
0 = 0
1 = 1
2 = 2
3 = 3
4 = 2 x 2
5 = 5
6 = 2 x 3
7 = 7
8 = 2 x 2 x 2
9 = 3 x 3
In total:
7 2's + 4 3's + 1 5's + 1 7's
With the fact that When A=B=C, composition of prime factor of A must be same as composition of prime factor of B and that of C, 0 , 5 and 7 are excluded since they have unique prime factor that can never match with the fact.
Hence, 7 2's + 4 3's are left and we have 7 digit (1,2,3,4,6,8,9). As there are 7 digits only, the number is formed by these digits only.
Recall the fact, A, B and C must have same composition of prime factors. This implies that A, B and C have same number of 2's and 3's in their composition. So, we should try to achieve (in total for A and B and C):
9 OR 12 2's AND
6 3's
(Must be product of 3, lower bound is total number of prime factor of all digits, upper bound is lower bound * 2)
Consider point 2 (as it has one possibility), A has 2 3's and same for B and C. To have more number of prime factor in total, we need to put digit in connection digit between two product (third or fifth digit). Extract digits with prime factor 3 into two groups {3,6} and {9} and put digit into connection digit. The only possible way is to put 9 in connection digit and 3,6 on unconnected product. That mean xx9xx36 or 36xx9xx (order of 3,6 is not important)
With this result, we get 9 x middle x connection digit = connection digit x 3 x 6. Thus, middle = (3 x 6) / 9 = 2
My answer actually extends #Ansh's answer.
Let abcdefg be the digits of the number. Then
ab=de
cd=fg
From these relations we can exclude 0, 5 and 7 because there are no other multipliers of these numbers between 0 and 9. So we are left with seven numbers and each number is included once in each answer. We are going to examine how we can pair the numbers (ab, de, cd, fg).
What happens with 9? It can't be combined with 3 or 6 since then their product will have three times the factor 3 and we have at total 4 factors of 3. Similarly, 3 and 6 must be combined at least one time together in response to the two factors of 9. This gives a product of 18 and so 9 must be combined at least once with 2.
Now if 9x2 is in a corner then 3x6 must be in the middle. Meaning in the other corner there must be another multiplier of 3. So 9 and 2 are in the middle.
Let's suppose ab=3x6 (The other case is symmetric). Then d must be 9 or 2. But if d is 9 then f or g must be multiplier of 3. So d is 2 and e is 9. We can stop here and answer the middle digit is
2
Now we have 2c = fg and the remaining choices are 1, 4, 8. We see that the only solutions are c = 4, f = 1, g = 8 and c = 4, f = 8, g = 1.
So if is 3x6 is in the left corner we have the following solutions:
3642918, 3642981, 6342918, 6342981
If 3x6 is in the right corner we have the following solutions which are the reverse of the above:
8192463, 1892463, 8192436, 1892436
Here is how you can consider the problem:
Let's note the final solution N1 N2 N3 N4 N5 N6 N7 for the 3 numbers N1N2N3, N3N4N5 and N5N6N7
0, 5 and 7 are to exclude because they are prime and no other ciphers is a multiple of them. So if they had divided one of the 3 numbers, no other number could have divided the others.
So we get the 7 remaining ciphers : 1234689
where the product of the ciphers is 2^7*3^4
(N1*N2*N3) and (N5*N6*N7) are equals so their product is a square number. We can then remove, one of the number (N4) from the product of the previous point to find a square number (i.e. even exponents on both numbers)
N4 can't be 1, 3, 4, 6, 9.
We conclude N4 is 2 or 8
If N4 is 8 and it divides (N3*N4*N5), we can't use the remaining even numbers (2, 4, 6) to divides
both (N1*N2*N3) and (N6*N7*N8) by 8. So N4 is 2 and 8 does not belong to the second group (let's put it in N1).
Now, we have: 1st grp: 8XX, 2nd group: X2X 3rd group: XXX
Note: at this point we know that the product is 72 because it is 2^3*3^2 (the square root of 2^6*3^4) but the result is not really important. We have made the difficult part knowing the 7 numbers and the middle position.
Then, we know that we have to distribute 2^3 on (N1*N2*N3), (N3*N4*N5), (N5*N6*N7) because 2^3*2*2^3=2^7
We already gave 8 to N1, 2 to N4 and we place 6 to N6, and 4 to N5 position, resulting in each of the 3 numbers being a multiple of 8.
Now, we have: 1st grp: 8XX, 2nd group: X24 3rd group: 46X
We have the same way of thinking considering the odd number, we distribute 3^2, on each part knowing that we already have a 6 in the last group.
Last group will then get the 3. And first and second ones the 9.
Now, we have: 1st grp: 8X9, 2nd group: 924 3rd group: 463
And, then 1 at N2, which is the remaining position.
This problem is pretty easy if you look at the number 72 more carefully.
We have our number with this form abcdefg
and abc = cde = efg, with those digits 8,1,9,2,4,3,6
So, first, we can conclude that 8,1,9 must be one of the triple, because, there is no way 1 can go with other two numbers to form 72.
We can also conclude that 1 must be in the start/end of the whole number or middle of the triple.
So now we have 819defg or 918defg ...
Using some calculations with the rest of those digits, we can see that only 819defg is possible, because, we need 72/9 = 8,so only 2,4 is valid, while we cannot create 72/8 = 9 from those 2,4,3,6 digits, so -> 81924fg or 81942fg and 819 must be the triple that start or end our number.
So the rest of the job is easy, we need either 72/4 = 18 or 72/2 = 36, now, we can have our answers: 8192436 or 8192463.
7 digits: 8,1,9,2,4,3,6
say XxYxZ = 72
1) pick any two from above 7 digits. say X,Y
2) divide 72 by X and then Y.. you will get the 3rd number i.e Z.
we found XYZ set of 3-digits which gives result 72.
now repeat 1) and 2) with remaining 4 digits.
this time we found ABC which multiplies to 72.
lets say, 7th digit left out is I.
3) divide 72 by I. result R
4) divide R by one of XYZ. check if result is in ABC.
if No, repeat the step 3)
if yes, found the third pair.(assume you divided R by Y and the result is B)
YIB is the third pair.
so... solution will be.
XZYIBAC
You have your 7 numbers - instead of looking at it in groups of 3 divide up the number as such:
AB | C | D | E | FG
Get the value of AB and use it to get the value of C like so: C = ABC/AB
Next you want to do the same thing with the trailing 2 digits to find E using FG. E = EFG/FG
Now that you have C & E you can solve for D
Since CDE = ABC then D = ABC/CE
Remember your formulas - instead of looking at numbers create a formula aka an algorithm that you know will work every time.
ABC = CDE = EFG However, you have to remember that your = signs have to balance. You can see that D = ABC/CE = EFG/CE Once you know that, you can figure out what you need in order to solve the problem.
Made a quick example in a fiddle of the code:
http://jsfiddle.net/4ykxx9ve/1/
var findMidNum = function() {
var num = [8, 1, 9, 2, 4, 3, 6];
var ab = num[0] * num[1];
var fg = num[5] * num[6];
var abc = num[0] * num[1] * num[2];
var cde = num[2] * num[3] * num[4];
var efg = num[4] * num[5] * num[6];
var c = abc/ab;
var e = efg/fg;
var ce = c * e
var d = abc/ce;
console.log(d); //2
}();
You have been given a 7 digit number(with each digit being distinct and 0-9). The number has this property
product of first 3 digits = product of last 3 digits = product of central 3 digits
Identify the middle digit.
Now, I can do this on paper by brute force(trial and error), the product is 72 and digits being
8,1,9,2,4,3,6
Now how do I approach the problem in a no brute force way?
use linq and substring functions
example var item = array.Skip(3).Take(3) in such a way that you have a loop
for(f =0;f<charlen.length;f++){
var xItemSum = charlen[f].Skip(f).Take(f).Sum(f => f.Value);
}
// untested code
I want to find the best match of a sequence of integers within a NxN matrix. The problem is that I don't know how to extract the position of this best match. The following code that I have should calculate the edit distance but I would like to know where in my grid that edit distance is shortest!
function res = searchWordDistance(word,grid)
% wordsize = length(word); % extract the actual size
% [x ,y] = find(word(1) == grid);
D(1,1,1)=0;
for i=2:length(word)+1
D(i,1,1) = D(i-1,1,1)+1;
end
for j=2:length(grid)
D(1,1,j) = D(1,1,j-1)+1;
D(1,j,1) = D(1,j-1,1)+1;
end
% inspect the grid for best match
for i=2:length(word)
for j=2:length(grid)
for z=2:length(grid)
if(word(i-1)==grid(j-1,z-1))
d = 0;
else
d=1;
end
c1=D(i-1,j-1,z-1)+d;
c2=D(i-1,j,z)+1;
c3=D(i,j-1,z-1)+1;
D(i,j,z) = min([c1 c2 c3]);
end
end
end
I have used this code (in one less dimension) to compare two strings.
EDIT Using a 5x5 matrix as example
15 17 19 20 22
14 8 1 15 24
11 4 17 3 2
14 2 1 14 8
19 23 5 1 22
now If I have a sequence [4,1,1] and [15,14,12,14] they should be found using the algorithm. The first one is a perfect match(diagonal starts at (3,2)). The second one is on the first column and is the closest match for that sequence since only one number is wrong.
I'm looking for a hint to an algorithm or pseudo code which helps me calculate sequences.
It's kind of permutations, but not exactly as it's not fixed length.
The output sequence should look something like this:
A
B
C
D
AA
BA
CA
DA
AB
BB
CB
DB
AC
BC
CC
DC
AD
BD
CD
DD
AAA
BAA
CAA
DAA
...
Every character above represents actually an integer, which gets incremented from a minimum to a maximum.
I do not know the depth when I start, so just using multiple nested for loops won't work.
It's late here in Germany and I just can't wrap my head around this. Pretty sure that it can be done with for loops and recursion, but I have currently no clue on how to get started.
Any ideas?
EDIT: B-typo corrected.
It looks like you're taking all combinations of four distinct digits of length 1, 2, 3, etc., allowing repeats.
So start with length 1: { A, B, C, D }
To get length 2, prepend A, B, C, D in turn to every member of length 1. (16 elements)
To get length 3, prepend A, B, C, D in turn to every member of length 2. (64 elements)
To get length 4, prepend A, B, C, D in turn to every member of length 3. (256 elements)
And so on.
If you have more or fewer digits, the same method will work. It gets a little trickier if you allow, say, A to equal B, but that doesn't look like what you're doing now.
Based on the comments from the OP, here's a way to do the sequence without storing the list.
Use an odometer analogy. This only requires keeping track of indices. Each time the first member of the sequence cycles around, increment the one to the right. If this is the first time that that member of the sequence has cycled around, then add a member to the sequence.
The increments will need to be cascaded. This is the equivalent of going from 99,999 to 100,000 miles (the comma is the thousands marker).
If you have a thousand integers that you need to cycle through, then pretend you're looking at an odometer in base 1000 rather than base 10 as above.
Your sequence looks more like (An-1 X AT) where A is a matrices and AT is its transpose.
A= [A,B,C,D]
AT X An-1 ∀ (n=0)
sequence= A,B,C,D
AT X An-1 ∀ (n=2)
sequence= AA,BA,CA,DA,AB,BB,CB,DB,AC,BC,CC,DC,AD,BD,CD,DD
You can go for any matrix multiplication code like this and implement what you wish.
You have 4 elements, you are simply looping the numbers in a reversed base 4 notation. Say A=0,B=1,C=2,D=3 :
first loop from 0 to 3 on 1 digit
second loop from 00 to 33 on 2 digits
and so on
i reversed i output using A,B,C,D digits
loop on 1 digit
0 0 A
1 1 B
2 2 C
3 3 D
loop on 2 digits
00 00 AA
01 10 BA
02 20 CA
03 30 DA
10 01 AB
11 11 BB
12 21 CB
13 31 DB
20 02 AC
21 12 BC
22 22 CC
...
The algorithm is pretty obvious. You could take a look at algorithm L (lexicographic t-combination generation) in fascicle 3a TAOCP D. Knuth.
How about:
Private Sub DoIt(minVal As Integer, maxVal As Integer, maxDepth As Integer)
If maxVal < minVal OrElse maxDepth <= 0 Then
Debug.WriteLine("no results!")
Return
End If
Debug.WriteLine("results:")
Dim resultList As New List(Of Integer)(maxDepth)
' initialize with the 1st result: this makes processing the remainder easy to write.
resultList.Add(minVal)
Dim depthIndex As Integer = 0
Debug.WriteLine(CStr(minVal))
Do
' find the term to be increased
Dim indexOfTermToIncrease As Integer = 0
While resultList(indexOfTermToIncrease) = maxVal
resultList(indexOfTermToIncrease) = minVal
indexOfTermToIncrease += 1
If indexOfTermToIncrease > depthIndex Then
depthIndex += 1
If depthIndex = maxDepth Then
Return
End If
resultList.Add(minVal - 1)
Exit While
End If
End While
' increase the term that was identified
resultList(indexOfTermToIncrease) += 1
' output
For d As Integer = 0 To depthIndex
Debug.Write(CStr(resultList(d)) + " ")
Next
Debug.WriteLine("")
Loop
End Sub
Would that be adequate? it doesn't take much memory and is relatively fast (apart from the writing to output...).