Keep reference of original points in a convex_hull_3 - computational-geometry

I would like to now if there is any mechanism to keep a reference on original vertices when computing a convex_hull_3 with CGAL or maybe something similar than CGAL::Triangulation_vertex_base_with_info_2 in order to compute convex_hull_3 for points with additional informations.
thanks!

Related

Point Intersection With Polygon in Ruby

How can I quickly find which of a set of polygons contain a given point?
I have a collection of polygons in a POSTGis database. I'm using RGeo on the ruby side to manipulate, save, and pull information from/to the database.
I receive a point (x and y coordinates) from an external machine and need to know which of my polygons this point lies within. I can't use the database because I need this to be done in memory for performance reasons.
I believe I might need an r-tree, but I don't exactly want to write one.
RGeo provides a contains? method that I can use to ensure a point is within a polygon of interest, but I need to know which polygon to check. I have on the order of 1,000 polygons and doing a linear search is not time efficient enough for my needs.
can this help? otherwise, there is this.
It seems that neartree is a better thing to search for w.r.t. ruby.
Hope this helps!
EDIT: if you need a general purpose implementation of an rtree, maybe the boost (c++) library can help there are bindings for it here.
that has bindings for methods which should help your use-case:
intersects?
intersects_each?
intersects_rect?
intersects_rect_each?

Edge detection : Any performance evaluation technique?

I am working on edge detection in images and would like to evaluate the performance of algorithm, if any any one could give me a reference or method on how to proceed it will be really helpful. :)
I do not have ground truth and data set includes color as well as gray images.
Thank you.
Create a synthetic data set with known edges, for example by 3D rendering, by compositing 2D images with precise masks (as may be obtained in royalty free photosets), or by introducing edges directly (thin/faint lines). Remember to add some confounding non-edges that look like edges, of a type appropriate for what you're tuning for.
Use your (non-synthetic) data set. Run the reference algorithms that you want to compare against. Also produce combinations of the reference algorithms, for example by voting (majority, at least K out of N, etc). Calculate stats on your algo vs reference algo performance, in terms of (a) number of points your algo classifies as edge which each reference algo, or the combination, does not classify as edge (false positive), or (b) number of points which the reference algo classifies as edge that your algo does not (false negative). You can also calculate a rank correlation-type number for algos by looking at each point and looking at which algos do (or don't) classify that as an edge.
Create ground truth manually. Use reference edge-finding algos as a starting point, then fix up by hand. Probably valuable to do for a small number of images in any case.
Good luck!
For comparisons, quantitative measures like what #Alex I explained is best. To do so, you need to define what is "correct" with a ground truth set and a way to consistently determine if a given image is correct or on a more granular level, how correct (some number like a percentage) it is. #Alex I gave a way to do that.
Another option that is often used in graphics research where there is no ground truth is user studies. Usually less desirable as they are time consuming and often more costly. However, if it is a qualitative improvement that you are after or if a quantitative measurement is just too hard to do, a user study is an appropriate solution.
When I mean user study I mean to poll people on how well a result is given the input image. You could give them a scale to rate things on and randomly give them samples from both your results and the results of another algorithm
And of course, if you still want more ideas, be sure to check out edge detection papers to see how they measured their results (I'd actually look here first as they've already gone through this same process and determined what was best for them: google scholar).

Robot exploration algorithm

I'm trying to devise an algorithm for a robot trying to find the flag(positioned at unknown location), which is located in a world containing obstacles. Robot's mission is to capture the flag and bring it to his home base(which represents his starting position). Robot, at each step, sees only a limited neighbourhood (he does not know how the world looks in advance), but he has an unlimited memory to store already visited cells.
I'm looking for any suggestions about how to do this in an efficient manner. Especially the first part; namely getting to the flag.
A simple Breadth First Search/Depth First Search will work, albeit slowly. Be sure to prevent the bot from checking paths that have the same square multiple times, as this will cause these algorithms to run much longer in standard cases, and indefinitely in the case of the flag being unable to be reached.
A* is the more elegant approach, especially if you know the location of the flag relative to yourself. Wikipedia, as per usual, does a decent job with explaining it. The classic heuristic to use is the manning distance (number of moves assuming no obstacles) to the destination.
These algorithms are useful for the return trip - not so much the "finding the flag" part.
Edit:
These approaches involve creating objects that represents squares on your map, and creating "paths" or series of square to hit (or steps to take). Once you build a framework for representing your square, the problem of what kind of search to use becomes a much less daunting task.
This class will need to be able to get a list of adjacent squares and know if it is traversable.
Considering that you don't have all information, try just treating unexplored tiles as traversable, and recomputing if you find they aren't.
Edit:
As for seaching an unknown area for an unknown object...
You can use something like Pledge's algorithm until you've found the boundaries of your space, recording all information as you go. Then go have a look at all unseen squares using your favorite drift/pathfinding algorithm. If, at any point long the way, you see the flag, stop what you're doing and use your favorite pathfinding algorithm to go home.
Part of it will be pathfinding, for example with the A* algorithm.
Part of it will be exploring. Any cell with an unknown neighbour is worth exploring. The best cells to explore are those closest to the robot and with the largest unexplored neighbourhood.
If the robot sees through walls some exploration candidates might be inaccessible and exploration might be required even if the flag is already visible.
It may be worthwhile to reevaluate the current target every time a new cell is revealed. As long as this is only done when new cells are revealed, progress will always be made.
With a simple DFS search at least you will find the flag:)
Well, there are two parts to this.
1) Searching for the Flag
2) Returning Home
For the searching part, I would circle the home point moving outward every time I made a complete loop. This way, you can search every square and idtentify if it is a clear spot, an obstacle, map boundary or the flag. This way, you can create a map of your environment.
Once the Flag is found, you could either go back the same way, or find a more direct route. If it is more direct route, then you would have to use the map which you have created to find a direct route.
What you want is to find all minimal-spanning-tree in the viewport of the robot and then let the robot game which mst he wants to travel.
If you met an obstacle, you can go around to determine its precise dimensions, and after measuring it return to the previous course.
With no obstacles in the range of sight you can try to just head in the direction of the nearest unchecked area.
It maybe doesn't seem the fastest way but, I think, it is the good point to start.
I think the approach would be to construct the graph as the robot travels. There will be a function that will return to the robot the particular state of a grid. This is needed since the robot will not know in advance the state of the grid.
You can apply heuristics in the search so the probability of reaching the flag is increased.
As many have mentioned, A* is good for global planning if you know where you are and where your goal is. But if you don't have this global knowledge, there is a class of algorithms call "bug" algorithms that you should look into.
As for exploration, if you want to find the flag the fastest, depending on how much of the local neighborhood your bot can see, you should try to not have this neighborhood overlap. For example if your bot can see one cell around it in every direction, you should explore every third column. (columns 1, 4, 7, etc.). But if the bot can only see the cell it is currently occupying, then the most optimal thing you can do is to not go back over what you already visited.

Comparing a "path" (or GPS trail) of a vehicle

I have a bit of a difficult algorithm question, I can't find any suitable algorithm from a lot of searching, so I am hoping that someone here on stackoverflow might know the answer.
I have a set of x,y coordinates for a vehicle as it moves through a 2D space, the coordinates are recorded at "decision points" in the time period (i.e. they have stopped and made a determination of where to move next).
What I want to do is find a mechanism for comparing these trails efficiently (i.e. not going through each point individually). Compounding this is that I am interested in the "pattern" of their movement, not necessarily the individual points they went to. This means that the "path" is considered the same if you reflect it around an axis, or if you rotate it by 90,180 or 270 degrees.
Basically I am trying to distil some sort of "behaviour" to the way they move through the space, then examine the different "behaviours" for classification purposes.
Cheers,
Aidan
This may be way more complicated than you're looking for, but it sounds like what the guys did at astrometry.net may be similar to what you're looking for. Essentially, you can upload a picture of some stars, and it will figure out the position in the sky it belongs, along with rotation, you may be able to use similar pattern matching in what you're looking for.
They have a great pdf explaining how it works here, and apparently you can email them and they'll send you the source code (details are in the pdf).
Edit: apparently you can download the code directly here.
Hope it helps.
there are several approaches you could make:
Using vector paths and translation matricies together with two algorithms, The A* (a star) algorithm ( to locate best routes from what are called greedy functions ), and the "nearest neighbour" algorithm --- these are both commonly used for comparing path efficiencies for routes.
you may not know it but the issue you have is known as the "travelling salesman" problem and has many many approaches.
so look up
traveling salesman problem
A*
Nearest neighbour
also look at
Random walk algorithm - for the most basic approach
for a learned behaviour approach try neural networks "ANN" or genetic algorithms
the mathematics for this type of problem are covered under what is called "graph theory"
It seems that basically what is needed is some metric to compare two(N in general) paths and choose the best one?
If that's the case then I'd suggest plain statistics. I'd start with heading(orientation) histogram, relative(relative to previous heading) heading histogram and so on. Other thing comes to mind - distance/orientation between points covariance. Or just simply make up some kind of "statistics"(number of turns, etc.) and compare those paths using that.

Datastructure for googlemap like application?

I am doing a maprouting application. Several people have suggested me, that I do a datastructure where I split the map in a grid. In theory it sounds really good, but I am not to sure because of the bad performance I get when I implement it.
In the worst case you have to draw every road. If you divide the map in a grid, the sum of roads in all the cells in the grid, will be much larger than if you put all roads in a list.(each cell must have more roads than actually needed if a road goes through it).
If I have to zoom in I can see some smartness in using a grid, but if I keep it in a list I can just decrease the numbers of roads each time I zoom in.
As it is now(by using the list) it is not really fast, so I am all for making it faster. But in practice dividing in a grid makes it slower for me.
Any suggestigion for what datastructure I should be using and/or what I might be doing wrong?
See this question for related information:
What algorithms compute directions from point A to point B on a map?
Somebody who writes this kind of software for a living has answered it.
Also for rendering see:
What is the best way to read, represent and render map data?
I'm not quite sure if you're trying to do routing quick or rendering!
If you want it to go quick, you might be better off organizing your roads in to major and minor roads.
Use the list of minor roads to find a route to the nearest major road.
Use the major roads to get you near the destination.
Then go back to the minor roads to complete the route.
Without a split like this, there are a heck of a lot of roads to search, most of which are quite slow routes.
google does not draw each road every time the screen is refreshed. They used pre-drawn tiles of the map. They can redraw them as needed. e.g. when there is a map update. They even use transparent overlays, stacks of tiles to add and remove layers of details.
Very clever, but very simple.
You may want to look at openlayers javascript library. Free and can do just about anything you need to do with a map.
Maptraction JS is also available - its not as complete as OpenLayers
More optimal then using a grid as your spatial data structure, might be a quadtree because it logarithmically breaks down the map. And from studying the source, my guesstimate is that google uses (that or) a similar data structure.
As for getting directions, you might want to look in to hierarchical path finding to approximate the direction at first and to speed up the process; generic path finding algorithms tend to be quite slow at that level of complexity.

Resources